U. Umoh, D. Asuquo, Imo J. Eyoh, Margaret Offisong
{"title":"面向4G移动网络QoS保障的智能呼叫接纳控制器","authors":"U. Umoh, D. Asuquo, Imo J. Eyoh, Margaret Offisong","doi":"10.5121/ijsc.2017.8403","DOIUrl":null,"url":null,"abstract":"Call admission control (CAC), a resource management function, is required to regulate network access to provide the required levels of QoS to emerging services in Fourth Generation (4G) mobile networks. However, CAC is one of the challenging issues for quality of service (QoS) due to imprecise, uncertain and inaccurate measurements of network data. Although type-1 fuzzy system (T1FLS) can handle the uncertainties related to imprecise data, it cannot adequately handle new problems posed by the complex nature of data traffic and diversity of the QoS requirements of data users. This is because T1FLS is characterised by precise membership functions. This study presents an intelligent CAC controller for 4G network using interval type-2 fuzzy logic (IT2FL) for providing guaranteed QoS requirements. The IT2FLS with fuzzy membership functions can fully cope with uncertainties associated with such dynamic network environments by raising its accuracy for a better performance. The Karnik–Mendel (KM) iterative algorithm and Wu-Mendel (WM) approach are explored for computing the centroid and to derive innerand outer-bound sets for the type-reduced set of IT2FS respectively. The study also implements a T1FLS – CAC for comparison with the KM and WM methods. The empirical comparison is made on the designed system with synthetic datasets. Simulation and analyses of results indicate that IT2FLS-CAC using WU approach achieves minimal call blocking probability and provides high performance in CAC decision making with a more reduced root mean square error (RMSE) than IT2FLS-CAC using KM and IT1FLS approaches.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":"137 1","pages":"21-37"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Intelligent Call Admission Controller for Guaranteed QoS in 4G Mobile Networks Full Text\",\"authors\":\"U. Umoh, D. Asuquo, Imo J. Eyoh, Margaret Offisong\",\"doi\":\"10.5121/ijsc.2017.8403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Call admission control (CAC), a resource management function, is required to regulate network access to provide the required levels of QoS to emerging services in Fourth Generation (4G) mobile networks. However, CAC is one of the challenging issues for quality of service (QoS) due to imprecise, uncertain and inaccurate measurements of network data. Although type-1 fuzzy system (T1FLS) can handle the uncertainties related to imprecise data, it cannot adequately handle new problems posed by the complex nature of data traffic and diversity of the QoS requirements of data users. This is because T1FLS is characterised by precise membership functions. This study presents an intelligent CAC controller for 4G network using interval type-2 fuzzy logic (IT2FL) for providing guaranteed QoS requirements. The IT2FLS with fuzzy membership functions can fully cope with uncertainties associated with such dynamic network environments by raising its accuracy for a better performance. The Karnik–Mendel (KM) iterative algorithm and Wu-Mendel (WM) approach are explored for computing the centroid and to derive innerand outer-bound sets for the type-reduced set of IT2FS respectively. The study also implements a T1FLS – CAC for comparison with the KM and WM methods. The empirical comparison is made on the designed system with synthetic datasets. Simulation and analyses of results indicate that IT2FLS-CAC using WU approach achieves minimal call blocking probability and provides high performance in CAC decision making with a more reduced root mean square error (RMSE) than IT2FLS-CAC using KM and IT1FLS approaches.\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\"137 1\",\"pages\":\"21-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijsc.2017.8403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijsc.2017.8403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
An Intelligent Call Admission Controller for Guaranteed QoS in 4G Mobile Networks Full Text
Call admission control (CAC), a resource management function, is required to regulate network access to provide the required levels of QoS to emerging services in Fourth Generation (4G) mobile networks. However, CAC is one of the challenging issues for quality of service (QoS) due to imprecise, uncertain and inaccurate measurements of network data. Although type-1 fuzzy system (T1FLS) can handle the uncertainties related to imprecise data, it cannot adequately handle new problems posed by the complex nature of data traffic and diversity of the QoS requirements of data users. This is because T1FLS is characterised by precise membership functions. This study presents an intelligent CAC controller for 4G network using interval type-2 fuzzy logic (IT2FL) for providing guaranteed QoS requirements. The IT2FLS with fuzzy membership functions can fully cope with uncertainties associated with such dynamic network environments by raising its accuracy for a better performance. The Karnik–Mendel (KM) iterative algorithm and Wu-Mendel (WM) approach are explored for computing the centroid and to derive innerand outer-bound sets for the type-reduced set of IT2FS respectively. The study also implements a T1FLS – CAC for comparison with the KM and WM methods. The empirical comparison is made on the designed system with synthetic datasets. Simulation and analyses of results indicate that IT2FLS-CAC using WU approach achieves minimal call blocking probability and provides high performance in CAC decision making with a more reduced root mean square error (RMSE) than IT2FLS-CAC using KM and IT1FLS approaches.
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.