路面车辙和IRI下应力场状态对路基弹性模量的影响

IF 2.2 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL Environmental geotechnics Pub Date : 2023-05-17 DOI:10.3390/geotechnics3020021
Kazi Moinul Islam, S. Gassman
{"title":"路面车辙和IRI下应力场状态对路基弹性模量的影响","authors":"Kazi Moinul Islam, S. Gassman","doi":"10.3390/geotechnics3020021","DOIUrl":null,"url":null,"abstract":"The new Mechanistic-Empirical Pavement Design Guide (MEPDG) uses the subgrade resilient modulus (MR) as the key input parameter to represent the subgrade soil behavior for pavement design. The resilient modulus increases with an increase in confining pressure, whereas, for an increase in deviatoric stress, it increases for granular soils and decreases for fine-grained soils. The value of MR is highly stress dependent, with the stress state (i.e., bulk stress) a function of the position of the materials in the pavement structure and applied traffic loading. Applying excessive vertical stress at the top of the subgrade without knowing the appropriate stress state can result in permanent deformation. In situ stress must be calculated so the correct resilient modulus can be determined. To facilitate the implementation of MEPDG, this study develops a methodology to select the appropriate subgrade resilient modulus for predicting rutting and IRI. A comprehensive research methodology was undertaken to study the effect of in situ or undisturbed subgrade MR on pavement performance using the MEPDG. Results show that MR obtained from in situ stress is approximately 1.4 times higher than the MR estimate from NCHRP-285. Thus, the in situ stress significantly affects the calculation of subgrade MR and, subsequently, the use of MR in the predicted rutting, with IRI using the AASHTOWare pavement mechanistic-empirical design. Results also show that the pavement sections were classified as in “Good” and “Fair” conditions for rutting and IRI, respectively, considering in situ MR.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of the Field-Stress State on the Subgrade Resilient Modulus for Pavement Rutting and IRI\",\"authors\":\"Kazi Moinul Islam, S. Gassman\",\"doi\":\"10.3390/geotechnics3020021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new Mechanistic-Empirical Pavement Design Guide (MEPDG) uses the subgrade resilient modulus (MR) as the key input parameter to represent the subgrade soil behavior for pavement design. The resilient modulus increases with an increase in confining pressure, whereas, for an increase in deviatoric stress, it increases for granular soils and decreases for fine-grained soils. The value of MR is highly stress dependent, with the stress state (i.e., bulk stress) a function of the position of the materials in the pavement structure and applied traffic loading. Applying excessive vertical stress at the top of the subgrade without knowing the appropriate stress state can result in permanent deformation. In situ stress must be calculated so the correct resilient modulus can be determined. To facilitate the implementation of MEPDG, this study develops a methodology to select the appropriate subgrade resilient modulus for predicting rutting and IRI. A comprehensive research methodology was undertaken to study the effect of in situ or undisturbed subgrade MR on pavement performance using the MEPDG. Results show that MR obtained from in situ stress is approximately 1.4 times higher than the MR estimate from NCHRP-285. Thus, the in situ stress significantly affects the calculation of subgrade MR and, subsequently, the use of MR in the predicted rutting, with IRI using the AASHTOWare pavement mechanistic-empirical design. Results also show that the pavement sections were classified as in “Good” and “Fair” conditions for rutting and IRI, respectively, considering in situ MR.\",\"PeriodicalId\":11823,\"journal\":{\"name\":\"Environmental geotechnics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/geotechnics3020021\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3020021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

摘要

新的力学-经验路面设计指南(MEPDG)将路基弹性模量(MR)作为路面设计的关键输入参数来表示路基土壤的行为。弹性模量随围压的增大而增大,而随偏应力的增大,颗粒土的弹性模量增大,细粒土的弹性模量减小。MR值高度依赖于应力,应力状态(即体应力)是材料在路面结构中的位置和施加的交通荷载的函数。在不知道适当的应力状态的情况下,在路基顶部施加过大的垂直应力会导致永久变形。为了确定正确的弹性模量,必须计算原位应力。为了促进MEPDG的实施,本研究开发了一种方法来选择适当的路基弹性模量来预测车辙和IRI。使用MEPDG进行了一项全面的研究方法,研究原位或未受干扰的路基MR对路面性能的影响。结果表明,从原位应力得到的MR比NCHRP-285估计的MR高约1.4倍。因此,原位应力显著影响路基磁流变的计算,随后,磁流变用于预测车辙,IRI采用AASHTOWare路面力学经验设计。结果还表明,考虑到原位MR,路面路段车辙和IRI分别被划分为“良好”和“一般”条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of the Field-Stress State on the Subgrade Resilient Modulus for Pavement Rutting and IRI
The new Mechanistic-Empirical Pavement Design Guide (MEPDG) uses the subgrade resilient modulus (MR) as the key input parameter to represent the subgrade soil behavior for pavement design. The resilient modulus increases with an increase in confining pressure, whereas, for an increase in deviatoric stress, it increases for granular soils and decreases for fine-grained soils. The value of MR is highly stress dependent, with the stress state (i.e., bulk stress) a function of the position of the materials in the pavement structure and applied traffic loading. Applying excessive vertical stress at the top of the subgrade without knowing the appropriate stress state can result in permanent deformation. In situ stress must be calculated so the correct resilient modulus can be determined. To facilitate the implementation of MEPDG, this study develops a methodology to select the appropriate subgrade resilient modulus for predicting rutting and IRI. A comprehensive research methodology was undertaken to study the effect of in situ or undisturbed subgrade MR on pavement performance using the MEPDG. Results show that MR obtained from in situ stress is approximately 1.4 times higher than the MR estimate from NCHRP-285. Thus, the in situ stress significantly affects the calculation of subgrade MR and, subsequently, the use of MR in the predicted rutting, with IRI using the AASHTOWare pavement mechanistic-empirical design. Results also show that the pavement sections were classified as in “Good” and “Fair” conditions for rutting and IRI, respectively, considering in situ MR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental geotechnics
Environmental geotechnics Environmental Science-Water Science and Technology
CiteScore
6.20
自引率
18.20%
发文量
53
期刊介绍: In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground. Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering. The journal''s Editor in Chief is a Member of the Committee on Publication Ethics. All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories: geochemistry and geohydrology, soil and rock physics, biological processes in soil, soil-atmosphere interaction, electrical, electromagnetic and thermal characteristics of porous media, waste management, utilization of wastes, multiphase science, landslide wasting, soil and water conservation, sensor development and applications, the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques, uncertainty, reliability and risk, monitoring and forensic geotechnics.
期刊最新文献
Ecological flexible protection method of expansive soil slope under rainfall Briefing: Intensive inland aquaculture ponds: challenges and research opportunities 1D Damage constitutive model and small strain characteristics of fly ash–cementitious iron tailings powder under static and dynamic loading Experimental investigation on gas migration behaviour in unsaturated sand-clay mixture Dry shrinkage cracking and permeability of biopolymer-modified clay under dry-wet cycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1