{"title":"被限制在圆盘上的活性粒子的逃逸问题","authors":"K. S. Olsen, L. Angheluta, E. Flekkøy","doi":"10.1103/physrevresearch.2.043314","DOIUrl":null,"url":null,"abstract":"We study the escape problem for interacting, self-propelled particles confined to a disc, where particles can exit through one open slot on the circumference. Within a minimal 2D Vicsek model, we numerically study the statistics of escape events when the self-propelled particles can be in a flocking state. We show that while an exponential survival probability is characteristic for non-interaction self-propelled particles at all times, the interacting particles have an initial exponential phase crossing over to a sub-exponential late-time behavior. We propose a new phenomenological model based on non-stationary Poisson processes which includes the Allee effect to explain this sub-exponential trend and perform numerical simulations for various noise intensities.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Escape problem for active particles confined to a disk\",\"authors\":\"K. S. Olsen, L. Angheluta, E. Flekkøy\",\"doi\":\"10.1103/physrevresearch.2.043314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the escape problem for interacting, self-propelled particles confined to a disc, where particles can exit through one open slot on the circumference. Within a minimal 2D Vicsek model, we numerically study the statistics of escape events when the self-propelled particles can be in a flocking state. We show that while an exponential survival probability is characteristic for non-interaction self-propelled particles at all times, the interacting particles have an initial exponential phase crossing over to a sub-exponential late-time behavior. We propose a new phenomenological model based on non-stationary Poisson processes which includes the Allee effect to explain this sub-exponential trend and perform numerical simulations for various noise intensities.\",\"PeriodicalId\":8473,\"journal\":{\"name\":\"arXiv: Statistical Mechanics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.2.043314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.2.043314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Escape problem for active particles confined to a disk
We study the escape problem for interacting, self-propelled particles confined to a disc, where particles can exit through one open slot on the circumference. Within a minimal 2D Vicsek model, we numerically study the statistics of escape events when the self-propelled particles can be in a flocking state. We show that while an exponential survival probability is characteristic for non-interaction self-propelled particles at all times, the interacting particles have an initial exponential phase crossing over to a sub-exponential late-time behavior. We propose a new phenomenological model based on non-stationary Poisson processes which includes the Allee effect to explain this sub-exponential trend and perform numerical simulations for various noise intensities.