{"title":"近似纳什均衡的通信复杂性","authors":"Y. Babichenko, A. Rubinstein","doi":"10.1145/3055399.3055407","DOIUrl":null,"url":null,"abstract":"For a constant ϵ, we prove a (N) lower bound on the (randomized) communication complexity of ϵ-Nash equilibrium in two-player N x N games. For n-player binary-action games we prove an exp(n) lower bound for the (randomized) communication complexity of (ϵ,ϵ)-weak approximate Nash equilibrium, which is a profile of mixed actions such that at least (1-ϵ)-fraction of the players are ϵ-best replying.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Communication complexity of approximate Nash equilibria\",\"authors\":\"Y. Babichenko, A. Rubinstein\",\"doi\":\"10.1145/3055399.3055407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a constant ϵ, we prove a (N) lower bound on the (randomized) communication complexity of ϵ-Nash equilibrium in two-player N x N games. For n-player binary-action games we prove an exp(n) lower bound for the (randomized) communication complexity of (ϵ,ϵ)-weak approximate Nash equilibrium, which is a profile of mixed actions such that at least (1-ϵ)-fraction of the players are ϵ-best replying.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
摘要
对于一个常数ε,我们证明了在双玩家N x N博弈中ϵ-Nash均衡的(随机)通信复杂度的(N)下界。对于n人二元动作游戏,我们证明了(随机)通信复杂度(λ, λ)-弱近似纳什均衡的exp(n)下界,这是混合动作的一个特征,使得至少(1- λ)-部分玩家回复ϵ-best。
Communication complexity of approximate Nash equilibria
For a constant ϵ, we prove a (N) lower bound on the (randomized) communication complexity of ϵ-Nash equilibrium in two-player N x N games. For n-player binary-action games we prove an exp(n) lower bound for the (randomized) communication complexity of (ϵ,ϵ)-weak approximate Nash equilibrium, which is a profile of mixed actions such that at least (1-ϵ)-fraction of the players are ϵ-best replying.