{"title":"利用可重构超表面实现MIMO无线电力传输中的磁波束形成","authors":"Zhangyu Li, Zhi Sun","doi":"10.1109/GLOBECOM42002.2020.9322096","DOIUrl":null,"url":null,"abstract":"Wireless power transfer (WPT) has been widely used in IoT applications, such as mobile device charging, biomedical implants communication, and RFID field. Maximizing the power transfer efficiency (PTE) becomes one of the most crucial problems for designing the WPT systems. Magnetic induction (MI) beamforming has been proposed recently to maximize the PTE for the near field MIMO WPT systems. However, conventional magnetic beamforming in WPT systems usually requires accurate magnetic channel estimation, both amplitude and phase control of the charging source, which can not be achieved in an extreme environment. In this paper, we propose a novel magnetic induction beamforming scheme in MIMO WPT system using a reconfigurable metasurface. Instead of controlling the source currents or voltages, the reconfigurable metasurface can achieve near field beamforming only by varying the capacitor and resistance in specific coil array units. The beamforming is modeled as a discrete optimization problem and solved by using the Simulate Anneal (SA) method. Through the analytical and COMSOL simulation results, our proposed beamforming scheme can achieve approximately two times PTE of the conventional beamforming method in a 40 cm charging distance.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"44 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Enabling Magnetic Beamforming in MIMO Wireless Power Transfer Using Reconfigurable Metasurface\",\"authors\":\"Zhangyu Li, Zhi Sun\",\"doi\":\"10.1109/GLOBECOM42002.2020.9322096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless power transfer (WPT) has been widely used in IoT applications, such as mobile device charging, biomedical implants communication, and RFID field. Maximizing the power transfer efficiency (PTE) becomes one of the most crucial problems for designing the WPT systems. Magnetic induction (MI) beamforming has been proposed recently to maximize the PTE for the near field MIMO WPT systems. However, conventional magnetic beamforming in WPT systems usually requires accurate magnetic channel estimation, both amplitude and phase control of the charging source, which can not be achieved in an extreme environment. In this paper, we propose a novel magnetic induction beamforming scheme in MIMO WPT system using a reconfigurable metasurface. Instead of controlling the source currents or voltages, the reconfigurable metasurface can achieve near field beamforming only by varying the capacitor and resistance in specific coil array units. The beamforming is modeled as a discrete optimization problem and solved by using the Simulate Anneal (SA) method. Through the analytical and COMSOL simulation results, our proposed beamforming scheme can achieve approximately two times PTE of the conventional beamforming method in a 40 cm charging distance.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"44 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9322096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enabling Magnetic Beamforming in MIMO Wireless Power Transfer Using Reconfigurable Metasurface
Wireless power transfer (WPT) has been widely used in IoT applications, such as mobile device charging, biomedical implants communication, and RFID field. Maximizing the power transfer efficiency (PTE) becomes one of the most crucial problems for designing the WPT systems. Magnetic induction (MI) beamforming has been proposed recently to maximize the PTE for the near field MIMO WPT systems. However, conventional magnetic beamforming in WPT systems usually requires accurate magnetic channel estimation, both amplitude and phase control of the charging source, which can not be achieved in an extreme environment. In this paper, we propose a novel magnetic induction beamforming scheme in MIMO WPT system using a reconfigurable metasurface. Instead of controlling the source currents or voltages, the reconfigurable metasurface can achieve near field beamforming only by varying the capacitor and resistance in specific coil array units. The beamforming is modeled as a discrete optimization problem and solved by using the Simulate Anneal (SA) method. Through the analytical and COMSOL simulation results, our proposed beamforming scheme can achieve approximately two times PTE of the conventional beamforming method in a 40 cm charging distance.