一种小型低成本农业机器人姿态测量装置的研制

IF 0.7 Q3 AGRICULTURE, MULTIDISCIPLINARY Journal of Agricultural Sciences Pub Date : 2018-04-05 DOI:10.15832/ankutbd.446369
Yufei Liu, Noboru Nogichi, K. Ishii
{"title":"一种小型低成本农业机器人姿态测量装置的研制","authors":"Yufei Liu, Noboru Nogichi, K. Ishii","doi":"10.15832/ankutbd.446369","DOIUrl":null,"url":null,"abstract":"The objective of this study was to develop a small-sized and low-cost unit to provide attitude measurements for lightloaded, small-sized and cost effective agricultural robot application. The attitude measurement unit comprised an electronic control unit (ECU) and a gyroscope and an accelerometer within a small-sized and low-cost IMU. In order to avoid the measurement limitations of a single sensor, a self-adaptive complementary filter and a Kalman filter were discussed and compared for sensor fusion. By comparison, in respect of preventing angle drift and maintaining dynamic characteristics, the Kalman filter has the significant advantage, especially in dynamic motion. In the comparison with a highly precise aviation-level fiber optic gyroscope (FOG), the results showed that the static angle drift was restrained by Kalman filter which reached the performance of the FOG. And in the series of farm experiments, the dynamic characteristic of the developed attitude measurement unit is close to the FOG performance in the sub-degree level. This is an acceptable accuracy for light-loaded, small-sized and cost effective agricultural robot application such as agriculture drone, greenhouse robots, harvesting robot arm and so on.","PeriodicalId":41577,"journal":{"name":"Journal of Agricultural Sciences","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Development of a Small-sized and Low-cost Attitude Measurement Unit for Agricultural Robot Application\",\"authors\":\"Yufei Liu, Noboru Nogichi, K. Ishii\",\"doi\":\"10.15832/ankutbd.446369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study was to develop a small-sized and low-cost unit to provide attitude measurements for lightloaded, small-sized and cost effective agricultural robot application. The attitude measurement unit comprised an electronic control unit (ECU) and a gyroscope and an accelerometer within a small-sized and low-cost IMU. In order to avoid the measurement limitations of a single sensor, a self-adaptive complementary filter and a Kalman filter were discussed and compared for sensor fusion. By comparison, in respect of preventing angle drift and maintaining dynamic characteristics, the Kalman filter has the significant advantage, especially in dynamic motion. In the comparison with a highly precise aviation-level fiber optic gyroscope (FOG), the results showed that the static angle drift was restrained by Kalman filter which reached the performance of the FOG. And in the series of farm experiments, the dynamic characteristic of the developed attitude measurement unit is close to the FOG performance in the sub-degree level. This is an acceptable accuracy for light-loaded, small-sized and cost effective agricultural robot application such as agriculture drone, greenhouse robots, harvesting robot arm and so on.\",\"PeriodicalId\":41577,\"journal\":{\"name\":\"Journal of Agricultural Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Sciences\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.15832/ankutbd.446369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Sciences","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.15832/ankutbd.446369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

本研究的目的是开发一种小尺寸、低成本的单元,为轻负荷、小尺寸、低成本的农业机器人应用提供姿态测量。姿态测量单元由一个电子控制单元(ECU)、一个陀螺仪和一个加速度计组成,在一个小型和低成本的IMU内。为了避免单个传感器测量的局限性,讨论了自适应互补滤波器和卡尔曼滤波器在传感器融合中的应用,并进行了比较。通过比较,卡尔曼滤波在防止角度漂移和保持动态特性方面具有明显的优势,特别是在动态运动方面。通过与高精度航空级光纤陀螺仪(FOG)的比较,结果表明卡尔曼滤波对静态角漂移的抑制达到了FOG的性能。在一系列的农场试验中,所研制的姿态测量单元的动态特性在次度水平上接近陀螺的性能。对于农业无人机、温室机器人、收获机械臂等轻型、小型、高性价比的农业机器人应用来说,这是一个可以接受的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Small-sized and Low-cost Attitude Measurement Unit for Agricultural Robot Application
The objective of this study was to develop a small-sized and low-cost unit to provide attitude measurements for lightloaded, small-sized and cost effective agricultural robot application. The attitude measurement unit comprised an electronic control unit (ECU) and a gyroscope and an accelerometer within a small-sized and low-cost IMU. In order to avoid the measurement limitations of a single sensor, a self-adaptive complementary filter and a Kalman filter were discussed and compared for sensor fusion. By comparison, in respect of preventing angle drift and maintaining dynamic characteristics, the Kalman filter has the significant advantage, especially in dynamic motion. In the comparison with a highly precise aviation-level fiber optic gyroscope (FOG), the results showed that the static angle drift was restrained by Kalman filter which reached the performance of the FOG. And in the series of farm experiments, the dynamic characteristic of the developed attitude measurement unit is close to the FOG performance in the sub-degree level. This is an acceptable accuracy for light-loaded, small-sized and cost effective agricultural robot application such as agriculture drone, greenhouse robots, harvesting robot arm and so on.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural Sciences
Journal of Agricultural Sciences AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Covid-19 Pandemic on Global Agriculture, Livelihoods and Food Systems Effect of Different Levels of Direct-fed Microbials Plus Exogenous Fibrolytic Enzymes Additives on the Growth Traits of Dairy Calves Spatial Data Model for Rural Planning and Land Management in Turkey Determining the most stable potato hybrid using AMMI yield stability analysis method Impact Assessment of the Cotton YIELD Programme in Zambia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1