{"title":"随机球谐波节点长度的中等偏差估计","authors":"C. Macci, Maurizia Rossi, Anna Todino","doi":"10.30757/alea.v18-11","DOIUrl":null,"url":null,"abstract":"We prove Moderate Deviation estimates for nodal lengths of random spherical harmonics both on the whole sphere and on shrinking spherical domains. Central Limit Theorems for the latter were recently established in Marinucci, Rossi and Wigman (2020) and Todino (2020+) respectively. Our proofs are based on the combination of a Moderate Deviation Principle by Schulte and Thale (2016) for sequences of random variables living in a fixed Wiener chaos with a well-known result based on the concept of exponential equivalence.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Moderate Deviation estimates for Nodal Lengths\\nof Random Spherical Harmonics\",\"authors\":\"C. Macci, Maurizia Rossi, Anna Todino\",\"doi\":\"10.30757/alea.v18-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove Moderate Deviation estimates for nodal lengths of random spherical harmonics both on the whole sphere and on shrinking spherical domains. Central Limit Theorems for the latter were recently established in Marinucci, Rossi and Wigman (2020) and Todino (2020+) respectively. Our proofs are based on the combination of a Moderate Deviation Principle by Schulte and Thale (2016) for sequences of random variables living in a fixed Wiener chaos with a well-known result based on the concept of exponential equivalence.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v18-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30757/alea.v18-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Moderate Deviation estimates for Nodal Lengths
of Random Spherical Harmonics
We prove Moderate Deviation estimates for nodal lengths of random spherical harmonics both on the whole sphere and on shrinking spherical domains. Central Limit Theorems for the latter were recently established in Marinucci, Rossi and Wigman (2020) and Todino (2020+) respectively. Our proofs are based on the combination of a Moderate Deviation Principle by Schulte and Thale (2016) for sequences of random variables living in a fixed Wiener chaos with a well-known result based on the concept of exponential equivalence.