群体测试:信息论视角

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Foundations and Trends in Communications and Information Theory Pub Date : 2019-02-15 DOI:10.1561/0100000099
Matthew Aldridge, O. Johnson, J. Scarlett
{"title":"群体测试:信息论视角","authors":"Matthew Aldridge, O. Johnson, J. Scarlett","doi":"10.1561/0100000099","DOIUrl":null,"url":null,"abstract":"The group testing problem concerns discovering a small number of defective items within a large population by performing tests on pools of items. A test is positive if the pool contains at least one defective, and negative if it contains no defectives. This is a sparse inference problem with a combinatorial flavour, with applications in medical testing, biology, telecommunications, information technology, data science, and more. In this monograph, we survey recent developments in the group testing problem from an information-theoretic perspective. We cover several related developments: efficient algorithms with practical storage and computation requirements, achievability bounds for optimal decoding methods, and algorithm-independent converse bounds. We assess the theoretical guarantees not only in terms of scaling laws, but also in terms of the constant factors, leading to the notion of the {\\em rate} of group testing, indicating the amount of information learned per test. Considering both noiseless and noisy settings, we identify several regimes where existing algorithms are provably optimal or near-optimal, as well as regimes where there remains greater potential for improvement. In addition, we survey results concerning a number of variations on the standard group testing problem, including partial recovery criteria, adaptive algorithms with a limited number of stages, constrained test designs, and sublinear-time algorithms.","PeriodicalId":45236,"journal":{"name":"Foundations and Trends in Communications and Information Theory","volume":"15 1","pages":"196-392"},"PeriodicalIF":2.0000,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"228","resultStr":"{\"title\":\"Group testing: an information theory perspective\",\"authors\":\"Matthew Aldridge, O. Johnson, J. Scarlett\",\"doi\":\"10.1561/0100000099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The group testing problem concerns discovering a small number of defective items within a large population by performing tests on pools of items. A test is positive if the pool contains at least one defective, and negative if it contains no defectives. This is a sparse inference problem with a combinatorial flavour, with applications in medical testing, biology, telecommunications, information technology, data science, and more. In this monograph, we survey recent developments in the group testing problem from an information-theoretic perspective. We cover several related developments: efficient algorithms with practical storage and computation requirements, achievability bounds for optimal decoding methods, and algorithm-independent converse bounds. We assess the theoretical guarantees not only in terms of scaling laws, but also in terms of the constant factors, leading to the notion of the {\\\\em rate} of group testing, indicating the amount of information learned per test. Considering both noiseless and noisy settings, we identify several regimes where existing algorithms are provably optimal or near-optimal, as well as regimes where there remains greater potential for improvement. In addition, we survey results concerning a number of variations on the standard group testing problem, including partial recovery criteria, adaptive algorithms with a limited number of stages, constrained test designs, and sublinear-time algorithms.\",\"PeriodicalId\":45236,\"journal\":{\"name\":\"Foundations and Trends in Communications and Information Theory\",\"volume\":\"15 1\",\"pages\":\"196-392\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"228\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Communications and Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/0100000099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Communications and Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/0100000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 228

摘要

组测试问题涉及通过对项目池执行测试,在大量人群中发现少量有缺陷的项目。如果池中至少包含一个缺陷,则测试为阳性,如果池中不包含缺陷,则测试为阴性。这是一个具有组合风格的稀疏推理问题,在医学测试、生物学、电信、信息技术、数据科学等领域都有应用。在这篇专著中,我们从信息论的角度综述了群测试问题的最新进展。我们涵盖了几个相关的发展:具有实际存储和计算需求的高效算法,最佳解码方法的可实现性界限,以及与算法无关的逆界限。我们不仅根据比例定律评估理论保证,而且根据常数因素评估理论保证,从而得出群体测试的{\em率}的概念,表明每次测试学习的信息量。考虑到无噪声和有噪声的设置,我们确定了几种现有算法可证明是最优或接近最优的制度,以及仍有更大改进潜力的制度。此外,我们调查了关于标准群测试问题的一些变化的结果,包括部分恢复准则、有限阶段数的自适应算法、约束测试设计和次线性时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Group testing: an information theory perspective
The group testing problem concerns discovering a small number of defective items within a large population by performing tests on pools of items. A test is positive if the pool contains at least one defective, and negative if it contains no defectives. This is a sparse inference problem with a combinatorial flavour, with applications in medical testing, biology, telecommunications, information technology, data science, and more. In this monograph, we survey recent developments in the group testing problem from an information-theoretic perspective. We cover several related developments: efficient algorithms with practical storage and computation requirements, achievability bounds for optimal decoding methods, and algorithm-independent converse bounds. We assess the theoretical guarantees not only in terms of scaling laws, but also in terms of the constant factors, leading to the notion of the {\em rate} of group testing, indicating the amount of information learned per test. Considering both noiseless and noisy settings, we identify several regimes where existing algorithms are provably optimal or near-optimal, as well as regimes where there remains greater potential for improvement. In addition, we survey results concerning a number of variations on the standard group testing problem, including partial recovery criteria, adaptive algorithms with a limited number of stages, constrained test designs, and sublinear-time algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations and Trends in Communications and Information Theory
Foundations and Trends in Communications and Information Theory COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
7.90
自引率
0.00%
发文量
6
期刊介绍: Foundations and Trends® in Communications and Information Theory publishes survey and tutorial articles in the following topics: - Coded modulation - Coding theory and practice - Communication complexity - Communication system design - Cryptology and data security - Data compression - Data networks - Demodulation and Equalization - Denoising - Detection and estimation - Information theory and statistics - Information theory and computer science - Joint source/channel coding - Modulation and signal design - Multiuser detection - Multiuser information theory
期刊最新文献
Probabilistic Amplitude Shaping Reed-Muller Codes Ultra-Reliable Low-Latency Communications: Foundations, Enablers, System Design, and Evolution Towards 6G Reed-Muller Codes Finite Blocklength Lossy Source Coding for Discrete Memoryless Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1