使用深度学习从时间集成桥快速采样

Leonardo Perotti , Lech A. Grzelak
{"title":"使用深度学习从时间集成桥快速采样","authors":"Leonardo Perotti ,&nbsp;Lech A. Grzelak","doi":"10.1016/j.jcmds.2022.100060","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a methodology for sampling from time-integrated stochastic bridges, i.e., random variables defined as <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mi>f</mi><mrow><mo>(</mo><mi>Y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math></span> conditional on <span><math><mrow><mi>Y</mi><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>=</mo><mspace></mspace><mi>a</mi></mrow></math></span> and <span><math><mrow><mi>Y</mi><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>=</mo><mspace></mspace><mi>b</mi></mrow></math></span>, with <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. The techniques developed in Grzelak et al. (2019) – the Stochastic Collocation Monte Carlo sampler – and in Liu et al. (2020) – the Seven-League scheme – are applied for this purpose. Notably, the time-integrated bridge distribution is approximated using a polynomial chaos expansion constructed over an appropriate set of stochastic collocation points. In addition, artificial neural networks are employed to learn the collocation points. The result is a robust, data-driven procedure for Monte Carlo sampling from time-integrated conditional processes, which guarantees high accuracy and generates thousands of samples in milliseconds. Applications are also presented, with a focus on finance.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"5 ","pages":"Article 100060"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000207/pdfft?md5=305a6ab11208f407d10fd97dc71efcd6&pid=1-s2.0-S2772415822000207-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Fast sampling from time-integrated bridges using deep learning\",\"authors\":\"Leonardo Perotti ,&nbsp;Lech A. Grzelak\",\"doi\":\"10.1016/j.jcmds.2022.100060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a methodology for sampling from time-integrated stochastic bridges, i.e., random variables defined as <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mi>f</mi><mrow><mo>(</mo><mi>Y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math></span> conditional on <span><math><mrow><mi>Y</mi><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>=</mo><mspace></mspace><mi>a</mi></mrow></math></span> and <span><math><mrow><mi>Y</mi><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>=</mo><mspace></mspace><mi>b</mi></mrow></math></span>, with <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. The techniques developed in Grzelak et al. (2019) – the Stochastic Collocation Monte Carlo sampler – and in Liu et al. (2020) – the Seven-League scheme – are applied for this purpose. Notably, the time-integrated bridge distribution is approximated using a polynomial chaos expansion constructed over an appropriate set of stochastic collocation points. In addition, artificial neural networks are employed to learn the collocation points. The result is a robust, data-driven procedure for Monte Carlo sampling from time-integrated conditional processes, which guarantees high accuracy and generates thousands of samples in milliseconds. Applications are also presented, with a focus on finance.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"5 \",\"pages\":\"Article 100060\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000207/pdfft?md5=305a6ab11208f407d10fd97dc71efcd6&pid=1-s2.0-S2772415822000207-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种从时间积分随机桥中抽样的方法,即随机变量定义为∫t122f (Y(t))dt,条件是Y(t1)=a和Y(t2)=b,其中a,b∈R。Grzelak等人(2019)开发的技术——随机搭配蒙特卡罗采样器——和Liu等人(2020)开发的技术——七联盟方案——被应用于此目的。值得注意的是,时间积分的桥梁分布是通过在一组适当的随机搭配点上构造的多项式混沌展开来近似的。此外,还采用人工神经网络进行搭配点的学习。结果是一个健壮的、数据驱动的程序,用于蒙特卡罗采样,从时间集成条件过程中,保证高精度,并在毫秒内生成数千个样本。应用程序也提出了,重点是金融。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast sampling from time-integrated bridges using deep learning

We propose a methodology for sampling from time-integrated stochastic bridges, i.e., random variables defined as t1t2f(Y(t))dt conditional on Y(t1)=a and Y(t2)=b, with a,bR. The techniques developed in Grzelak et al. (2019) – the Stochastic Collocation Monte Carlo sampler – and in Liu et al. (2020) – the Seven-League scheme – are applied for this purpose. Notably, the time-integrated bridge distribution is approximated using a polynomial chaos expansion constructed over an appropriate set of stochastic collocation points. In addition, artificial neural networks are employed to learn the collocation points. The result is a robust, data-driven procedure for Monte Carlo sampling from time-integrated conditional processes, which guarantees high accuracy and generates thousands of samples in milliseconds. Applications are also presented, with a focus on finance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Efficiency of the multisection method Bayesian optimization of one-dimensional convolutional neural networks (1D CNN) for early diagnosis of Autistic Spectrum Disorder Novel color space representation extracted by NMF to segment a color image Enhanced MRI brain tumor detection and classification via topological data analysis and low-rank tensor decomposition Artifact removal from ECG signals using online recursive independent component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1