{"title":"使用深度学习从时间集成桥快速采样","authors":"Leonardo Perotti , Lech A. Grzelak","doi":"10.1016/j.jcmds.2022.100060","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a methodology for sampling from time-integrated stochastic bridges, i.e., random variables defined as <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mi>f</mi><mrow><mo>(</mo><mi>Y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math></span> conditional on <span><math><mrow><mi>Y</mi><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>=</mo><mspace></mspace><mi>a</mi></mrow></math></span> and <span><math><mrow><mi>Y</mi><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>=</mo><mspace></mspace><mi>b</mi></mrow></math></span>, with <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. The techniques developed in Grzelak et al. (2019) – the Stochastic Collocation Monte Carlo sampler – and in Liu et al. (2020) – the Seven-League scheme – are applied for this purpose. Notably, the time-integrated bridge distribution is approximated using a polynomial chaos expansion constructed over an appropriate set of stochastic collocation points. In addition, artificial neural networks are employed to learn the collocation points. The result is a robust, data-driven procedure for Monte Carlo sampling from time-integrated conditional processes, which guarantees high accuracy and generates thousands of samples in milliseconds. Applications are also presented, with a focus on finance.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"5 ","pages":"Article 100060"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000207/pdfft?md5=305a6ab11208f407d10fd97dc71efcd6&pid=1-s2.0-S2772415822000207-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Fast sampling from time-integrated bridges using deep learning\",\"authors\":\"Leonardo Perotti , Lech A. Grzelak\",\"doi\":\"10.1016/j.jcmds.2022.100060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a methodology for sampling from time-integrated stochastic bridges, i.e., random variables defined as <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mi>f</mi><mrow><mo>(</mo><mi>Y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi></mrow></math></span> conditional on <span><math><mrow><mi>Y</mi><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>=</mo><mspace></mspace><mi>a</mi></mrow></math></span> and <span><math><mrow><mi>Y</mi><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>=</mo><mspace></mspace><mi>b</mi></mrow></math></span>, with <span><math><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. The techniques developed in Grzelak et al. (2019) – the Stochastic Collocation Monte Carlo sampler – and in Liu et al. (2020) – the Seven-League scheme – are applied for this purpose. Notably, the time-integrated bridge distribution is approximated using a polynomial chaos expansion constructed over an appropriate set of stochastic collocation points. In addition, artificial neural networks are employed to learn the collocation points. The result is a robust, data-driven procedure for Monte Carlo sampling from time-integrated conditional processes, which guarantees high accuracy and generates thousands of samples in milliseconds. Applications are also presented, with a focus on finance.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"5 \",\"pages\":\"Article 100060\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000207/pdfft?md5=305a6ab11208f407d10fd97dc71efcd6&pid=1-s2.0-S2772415822000207-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast sampling from time-integrated bridges using deep learning
We propose a methodology for sampling from time-integrated stochastic bridges, i.e., random variables defined as conditional on and , with . The techniques developed in Grzelak et al. (2019) – the Stochastic Collocation Monte Carlo sampler – and in Liu et al. (2020) – the Seven-League scheme – are applied for this purpose. Notably, the time-integrated bridge distribution is approximated using a polynomial chaos expansion constructed over an appropriate set of stochastic collocation points. In addition, artificial neural networks are employed to learn the collocation points. The result is a robust, data-driven procedure for Monte Carlo sampling from time-integrated conditional processes, which guarantees high accuracy and generates thousands of samples in milliseconds. Applications are also presented, with a focus on finance.