基于强化学习的基础设施即服务云工作流调度新方法

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Web Services Research Pub Date : 2021-01-01 DOI:10.4018/IJWSR.2021010102
Peng Chen, Yunni Xia, Chunhua Yu
{"title":"基于强化学习的基础设施即服务云工作流调度新方法","authors":"Peng Chen, Yunni Xia, Chunhua Yu","doi":"10.4018/IJWSR.2021010102","DOIUrl":null,"url":null,"abstract":"Recently, the cloud computing paradigm has become increasingly popular in large-scale and complex workflow applications. The workflow scheduling problem, which refers to finding the most suitable resource for each task of the workflow to meet user defined quality of service, attracts considerable research attention. Multi-objective optimization algorithms in workflow scheduling have many limitations (e.g., the encoding schemes in most existing heuristic-based scheduling algorithms require prior experts' knowledge), and thus, they can be ineffective when scheduling workflows upon dynamic cloud infrastructures with real time. A novel reinforcement-learning-based algorithm to multi-workflow scheduling over IaaS is proposed. It aims at optimizing make-span and dwell time and is to achieve a unique set of correlated equilibrium solution. The proposed algorithm is evaluated for famous workflow templates and real-world industrial IaaS by simulation and compared to the current state-of-the-art heuristic algorithms. The result shows that the algorithm outperforms compared algorithm.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"154 1","pages":"21-33"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Novel Reinforcement-Learning-Based Approach to Workflow Scheduling Upon Infrastructure-as-a-Service Clouds\",\"authors\":\"Peng Chen, Yunni Xia, Chunhua Yu\",\"doi\":\"10.4018/IJWSR.2021010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the cloud computing paradigm has become increasingly popular in large-scale and complex workflow applications. The workflow scheduling problem, which refers to finding the most suitable resource for each task of the workflow to meet user defined quality of service, attracts considerable research attention. Multi-objective optimization algorithms in workflow scheduling have many limitations (e.g., the encoding schemes in most existing heuristic-based scheduling algorithms require prior experts' knowledge), and thus, they can be ineffective when scheduling workflows upon dynamic cloud infrastructures with real time. A novel reinforcement-learning-based algorithm to multi-workflow scheduling over IaaS is proposed. It aims at optimizing make-span and dwell time and is to achieve a unique set of correlated equilibrium solution. The proposed algorithm is evaluated for famous workflow templates and real-world industrial IaaS by simulation and compared to the current state-of-the-art heuristic algorithms. The result shows that the algorithm outperforms compared algorithm.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"154 1\",\"pages\":\"21-33\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/IJWSR.2021010102\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJWSR.2021010102","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

近年来,云计算范式在大规模、复杂的工作流应用中越来越受欢迎。工作流调度问题是指为工作流的每个任务找到最合适的资源以满足用户定义的服务质量,引起了人们的广泛关注。工作流调度中的多目标优化算法存在许多局限性(例如,现有的大多数启发式调度算法的编码方案需要事先掌握专家知识),因此,在动态的云基础设施上实时调度工作流时,多目标优化算法可能是无效的。提出了一种基于强化学习的IaaS多工作流调度算法。它的目标是优化制造时间和停留时间,并获得一组唯一的相关平衡解。通过仿真对著名的工作流模板和现实工业IaaS进行了评估,并与当前最先进的启发式算法进行了比较。结果表明,该算法优于比较算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Reinforcement-Learning-Based Approach to Workflow Scheduling Upon Infrastructure-as-a-Service Clouds
Recently, the cloud computing paradigm has become increasingly popular in large-scale and complex workflow applications. The workflow scheduling problem, which refers to finding the most suitable resource for each task of the workflow to meet user defined quality of service, attracts considerable research attention. Multi-objective optimization algorithms in workflow scheduling have many limitations (e.g., the encoding schemes in most existing heuristic-based scheduling algorithms require prior experts' knowledge), and thus, they can be ineffective when scheduling workflows upon dynamic cloud infrastructures with real time. A novel reinforcement-learning-based algorithm to multi-workflow scheduling over IaaS is proposed. It aims at optimizing make-span and dwell time and is to achieve a unique set of correlated equilibrium solution. The proposed algorithm is evaluated for famous workflow templates and real-world industrial IaaS by simulation and compared to the current state-of-the-art heuristic algorithms. The result shows that the algorithm outperforms compared algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Web Services Research
International Journal of Web Services Research 工程技术-计算机:软件工程
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.
期刊最新文献
A Quasi-Newton Matrix Factorization-Based Model for Recommendation A Service Recommendation Algorithm Based on Self-Attention Mechanism and DeepFM Secure Cloud Storage and Retrieval of Personal Health Data From Smart Wearable Devices With Privacy-Preserving Techniques User Interaction Within Online Innovation Communities Research on a New Reconstruction Technology and Evaluation Method for 3D Digital Core Pore Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1