{"title":"基于强化学习的基础设施即服务云工作流调度新方法","authors":"Peng Chen, Yunni Xia, Chunhua Yu","doi":"10.4018/IJWSR.2021010102","DOIUrl":null,"url":null,"abstract":"Recently, the cloud computing paradigm has become increasingly popular in large-scale and complex workflow applications. The workflow scheduling problem, which refers to finding the most suitable resource for each task of the workflow to meet user defined quality of service, attracts considerable research attention. Multi-objective optimization algorithms in workflow scheduling have many limitations (e.g., the encoding schemes in most existing heuristic-based scheduling algorithms require prior experts' knowledge), and thus, they can be ineffective when scheduling workflows upon dynamic cloud infrastructures with real time. A novel reinforcement-learning-based algorithm to multi-workflow scheduling over IaaS is proposed. It aims at optimizing make-span and dwell time and is to achieve a unique set of correlated equilibrium solution. The proposed algorithm is evaluated for famous workflow templates and real-world industrial IaaS by simulation and compared to the current state-of-the-art heuristic algorithms. The result shows that the algorithm outperforms compared algorithm.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"154 1","pages":"21-33"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Novel Reinforcement-Learning-Based Approach to Workflow Scheduling Upon Infrastructure-as-a-Service Clouds\",\"authors\":\"Peng Chen, Yunni Xia, Chunhua Yu\",\"doi\":\"10.4018/IJWSR.2021010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the cloud computing paradigm has become increasingly popular in large-scale and complex workflow applications. The workflow scheduling problem, which refers to finding the most suitable resource for each task of the workflow to meet user defined quality of service, attracts considerable research attention. Multi-objective optimization algorithms in workflow scheduling have many limitations (e.g., the encoding schemes in most existing heuristic-based scheduling algorithms require prior experts' knowledge), and thus, they can be ineffective when scheduling workflows upon dynamic cloud infrastructures with real time. A novel reinforcement-learning-based algorithm to multi-workflow scheduling over IaaS is proposed. It aims at optimizing make-span and dwell time and is to achieve a unique set of correlated equilibrium solution. The proposed algorithm is evaluated for famous workflow templates and real-world industrial IaaS by simulation and compared to the current state-of-the-art heuristic algorithms. The result shows that the algorithm outperforms compared algorithm.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"154 1\",\"pages\":\"21-33\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/IJWSR.2021010102\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJWSR.2021010102","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Novel Reinforcement-Learning-Based Approach to Workflow Scheduling Upon Infrastructure-as-a-Service Clouds
Recently, the cloud computing paradigm has become increasingly popular in large-scale and complex workflow applications. The workflow scheduling problem, which refers to finding the most suitable resource for each task of the workflow to meet user defined quality of service, attracts considerable research attention. Multi-objective optimization algorithms in workflow scheduling have many limitations (e.g., the encoding schemes in most existing heuristic-based scheduling algorithms require prior experts' knowledge), and thus, they can be ineffective when scheduling workflows upon dynamic cloud infrastructures with real time. A novel reinforcement-learning-based algorithm to multi-workflow scheduling over IaaS is proposed. It aims at optimizing make-span and dwell time and is to achieve a unique set of correlated equilibrium solution. The proposed algorithm is evaluated for famous workflow templates and real-world industrial IaaS by simulation and compared to the current state-of-the-art heuristic algorithms. The result shows that the algorithm outperforms compared algorithm.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.