A. Ashibaparveen, V. Senthilkumar, Venkatesan Thirumal, P. Gowdhaman, Haresh M. Pandya
{"title":"基于气相色谱的声表面波传感器系统对有毒环境气体/蒸汽的潜在检测和识别的特性研究","authors":"A. Ashibaparveen, V. Senthilkumar, Venkatesan Thirumal, P. Gowdhaman, Haresh M. Pandya","doi":"10.13074/jent.2021.12.21441","DOIUrl":null,"url":null,"abstract":"The characterization of a custom-designed GC-based SAW e-Nose sensor system is presented here to study the sensing ability of the sensor system to detect and identify low medium and high toxic vapors. A semi-automated multi-vapor generator generates vapors of chemical compounds that are then exposed to the sensing system to examine its performance under various concentrations. Time-domain verses frequency response of GC-SAW Sensor is noted for repeated cycles against different chemical compounds like xylene, 1,2 dibromoethane, dimethyl sulfate, triethyl phosphate, nitrobenzene, phosphorous trichloride being tested. The generated data is examined using a principle component analysis (PCA) technique to detect a unique response for an individual chemical compound. Experimental results are reported.","PeriodicalId":36296,"journal":{"name":"Journal of Water and Environmental Nanotechnology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization Studies of a GC based SAW Sensor System for Potential Detection and Identification of Toxic Environmental Gases/Vapors\",\"authors\":\"A. Ashibaparveen, V. Senthilkumar, Venkatesan Thirumal, P. Gowdhaman, Haresh M. Pandya\",\"doi\":\"10.13074/jent.2021.12.21441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The characterization of a custom-designed GC-based SAW e-Nose sensor system is presented here to study the sensing ability of the sensor system to detect and identify low medium and high toxic vapors. A semi-automated multi-vapor generator generates vapors of chemical compounds that are then exposed to the sensing system to examine its performance under various concentrations. Time-domain verses frequency response of GC-SAW Sensor is noted for repeated cycles against different chemical compounds like xylene, 1,2 dibromoethane, dimethyl sulfate, triethyl phosphate, nitrobenzene, phosphorous trichloride being tested. The generated data is examined using a principle component analysis (PCA) technique to detect a unique response for an individual chemical compound. Experimental results are reported.\",\"PeriodicalId\":36296,\"journal\":{\"name\":\"Journal of Water and Environmental Nanotechnology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Environmental Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13074/jent.2021.12.21441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environmental Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13074/jent.2021.12.21441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Characterization Studies of a GC based SAW Sensor System for Potential Detection and Identification of Toxic Environmental Gases/Vapors
The characterization of a custom-designed GC-based SAW e-Nose sensor system is presented here to study the sensing ability of the sensor system to detect and identify low medium and high toxic vapors. A semi-automated multi-vapor generator generates vapors of chemical compounds that are then exposed to the sensing system to examine its performance under various concentrations. Time-domain verses frequency response of GC-SAW Sensor is noted for repeated cycles against different chemical compounds like xylene, 1,2 dibromoethane, dimethyl sulfate, triethyl phosphate, nitrobenzene, phosphorous trichloride being tested. The generated data is examined using a principle component analysis (PCA) technique to detect a unique response for an individual chemical compound. Experimental results are reported.