均值-方差优化的状态切换因子模型

IF 0.4 4区 经济学 Q4 BUSINESS, FINANCE Journal of Operational Risk Pub Date : 2020-04-28 DOI:10.21314/jor.2020.432
Giorgio Costa, R. Kwon
{"title":"均值-方差优化的状态切换因子模型","authors":"Giorgio Costa, R. Kwon","doi":"10.21314/jor.2020.432","DOIUrl":null,"url":null,"abstract":"We formulate a novel Markov regime-switching factor model to describe the cyclical nature of asset returns in modern financial markets. Maintaining a factor model structure allows us to easily derive the asset expected returns and their corresponding covariance matrix. By design, these two parameters are calibrated to better describe the properties of the different market regimes. In turn, these regime-dependent parameters serve as the inputs during mean–variance optimization, thereby constructing portfolios adapted to the current market environment. Through this formulation, the proposed model allows for the construction of large, realistic portfolios at no additional computational cost during optimization. Moreover, the viability of this model can be significantly improved by periodically rebalancing the portfolio, ensuring proper alignment between the estimated parameters and the transient market regimes. An out-of-sample computational experiment over a long investment horizon shows that the proposed regime-dependent portfolios are better aligned with the market environment, yielding a higher ex post rate of return and lower volatility than competing portfolios.","PeriodicalId":54030,"journal":{"name":"Journal of Operational Risk","volume":"43 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Regime-Switching Factor Model for Mean–Variance Optimization\",\"authors\":\"Giorgio Costa, R. Kwon\",\"doi\":\"10.21314/jor.2020.432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate a novel Markov regime-switching factor model to describe the cyclical nature of asset returns in modern financial markets. Maintaining a factor model structure allows us to easily derive the asset expected returns and their corresponding covariance matrix. By design, these two parameters are calibrated to better describe the properties of the different market regimes. In turn, these regime-dependent parameters serve as the inputs during mean–variance optimization, thereby constructing portfolios adapted to the current market environment. Through this formulation, the proposed model allows for the construction of large, realistic portfolios at no additional computational cost during optimization. Moreover, the viability of this model can be significantly improved by periodically rebalancing the portfolio, ensuring proper alignment between the estimated parameters and the transient market regimes. An out-of-sample computational experiment over a long investment horizon shows that the proposed regime-dependent portfolios are better aligned with the market environment, yielding a higher ex post rate of return and lower volatility than competing portfolios.\",\"PeriodicalId\":54030,\"journal\":{\"name\":\"Journal of Operational Risk\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operational Risk\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/jor.2020.432\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Risk","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/jor.2020.432","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 4

摘要

我们建立了一个新的马尔可夫制度转换因子模型来描述现代金融市场中资产回报的周期性。维持一个因素模型结构使我们能够很容易地推导出资产预期收益及其相应的协方差矩阵。在设计上,这两个参数经过校准,以更好地描述不同市场机制的特性。反过来,这些制度相关参数作为均值-方差优化过程中的输入,从而构建适应当前市场环境的投资组合。通过这个公式,提出的模型允许在优化过程中没有额外的计算成本的情况下构建大型、现实的投资组合。此外,通过定期重新平衡投资组合,确保估计参数与短暂市场制度之间的适当一致,可以显著提高该模型的可行性。一项长期投资范围的样本外计算实验表明,所提出的制度依赖投资组合与市场环境更一致,比竞争投资组合产生更高的离职后回报率和更低的波动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Regime-Switching Factor Model for Mean–Variance Optimization
We formulate a novel Markov regime-switching factor model to describe the cyclical nature of asset returns in modern financial markets. Maintaining a factor model structure allows us to easily derive the asset expected returns and their corresponding covariance matrix. By design, these two parameters are calibrated to better describe the properties of the different market regimes. In turn, these regime-dependent parameters serve as the inputs during mean–variance optimization, thereby constructing portfolios adapted to the current market environment. Through this formulation, the proposed model allows for the construction of large, realistic portfolios at no additional computational cost during optimization. Moreover, the viability of this model can be significantly improved by periodically rebalancing the portfolio, ensuring proper alignment between the estimated parameters and the transient market regimes. An out-of-sample computational experiment over a long investment horizon shows that the proposed regime-dependent portfolios are better aligned with the market environment, yielding a higher ex post rate of return and lower volatility than competing portfolios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Operational Risk
Journal of Operational Risk BUSINESS, FINANCE-
CiteScore
1.00
自引率
40.00%
发文量
6
期刊介绍: In December 2017, the Basel Committee published the final version of its standardized measurement approach (SMA) methodology, which will replace the approaches set out in Basel II (ie, the simpler standardized approaches and advanced measurement approach (AMA) that allowed use of internal models) from January 1, 2022. Independently of the Basel III rules, in order to manage and mitigate risks, they still need to be measurable by anyone. The operational risk industry needs to keep that in mind. While the purpose of the now defunct AMA was to find out the level of regulatory capital to protect a firm against operational risks, we still can – and should – use models to estimate operational risk economic capital. Without these, the task of managing and mitigating capital would be incredibly difficult. These internal models are now unshackled from regulatory requirements and can be optimized for managing the daily risks to which financial institutions are exposed. In addition, operational risk models can and should be used for stress tests and Comprehensive Capital Analysis and Review (CCAR). The Journal of Operational Risk also welcomes papers on nonfinancial risks as well as topics including, but not limited to, the following. The modeling and management of operational risk. Recent advances in techniques used to model operational risk, eg, copulas, correlation, aggregate loss distributions, Bayesian methods and extreme value theory. The pricing and hedging of operational risk and/or any risk transfer techniques. Data modeling external loss data, business control factors and scenario analysis. Models used to aggregate different types of data. Causal models that link key risk indicators and macroeconomic factors to operational losses. Regulatory issues, such as Basel II or any other local regulatory issue. Enterprise risk management. Cyber risk. Big data.
期刊最新文献
A risk-based internal audit methodology for Greek local government organizations Integrating text mining and analytic hierarchy process risk assessment with knowledge graphs for operational risk analysis Operational risk and regulatory capital: do public and private banks differ? Cyber risk definition and classification for financial risk management Audit committee characteristics and the audit report lag in Greece
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1