基于全集成传感器芯片的手持近红外模块的光谱传感

IF 0.8 4区 化学 Q4 SPECTROSCOPY Spectroscopy Pub Date : 2022-11-01 DOI:10.56530/spectroscopy.yd5989g6
F. Ou, A. van Klinken, K. Hakkel, M. Petruzzella, Don M. J. van Elst, P. Sevo, Chenhui Li, F. Pagliano, R. V. van Veldhoven, A. Fiore
{"title":"基于全集成传感器芯片的手持近红外模块的光谱传感","authors":"F. Ou, A. van Klinken, K. Hakkel, M. Petruzzella, Don M. J. van Elst, P. Sevo, Chenhui Li, F. Pagliano, R. V. van Veldhoven, A. Fiore","doi":"10.56530/spectroscopy.yd5989g6","DOIUrl":null,"url":null,"abstract":"Near-infrared (NIR) spectroscopy is widely used for the classification of materials and the quantification of their properties. Today, there is a high demand for extending the use of this technique to portable applications, and eventually, the integration with consumer appliances and smartphones. To reach this goal, the overall size of the NIR sensor, its production cost, robustness, and resistance to vibrations are of particular importance. This paper describes an approach to spectral sensing in the NIR (850–1700 nm) using a handheld sensor module based on a fully integrated multipixel detector array with a footprint of around 2×2 mm2. The capabilities of the spectral sensor module were recently evaluated in two application cases: Quantification of the fat percentage in raw milk and the classification of plastic types. Fat quantification was achieved with a root mean square error (RMSE) of prediction of 0.14% and classification of plastic types was achieved with a prediction accuracy on unknown samples of 100%. The results demonstrate the feasibility of the direct NIR sensing approach used by the integrated sensor, which has potential to be used in a variety of applications.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"20 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip\",\"authors\":\"F. Ou, A. van Klinken, K. Hakkel, M. Petruzzella, Don M. J. van Elst, P. Sevo, Chenhui Li, F. Pagliano, R. V. van Veldhoven, A. Fiore\",\"doi\":\"10.56530/spectroscopy.yd5989g6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-infrared (NIR) spectroscopy is widely used for the classification of materials and the quantification of their properties. Today, there is a high demand for extending the use of this technique to portable applications, and eventually, the integration with consumer appliances and smartphones. To reach this goal, the overall size of the NIR sensor, its production cost, robustness, and resistance to vibrations are of particular importance. This paper describes an approach to spectral sensing in the NIR (850–1700 nm) using a handheld sensor module based on a fully integrated multipixel detector array with a footprint of around 2×2 mm2. The capabilities of the spectral sensor module were recently evaluated in two application cases: Quantification of the fat percentage in raw milk and the classification of plastic types. Fat quantification was achieved with a root mean square error (RMSE) of prediction of 0.14% and classification of plastic types was achieved with a prediction accuracy on unknown samples of 100%. The results demonstrate the feasibility of the direct NIR sensing approach used by the integrated sensor, which has potential to be used in a variety of applications.\",\"PeriodicalId\":21957,\"journal\":{\"name\":\"Spectroscopy\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.56530/spectroscopy.yd5989g6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.56530/spectroscopy.yd5989g6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 1

摘要

近红外光谱学广泛应用于材料的分类和材料性质的定量分析。今天,将这种技术的使用扩展到便携式应用程序,并最终与消费设备和智能手机集成的需求很高。为了实现这一目标,近红外传感器的总体尺寸、生产成本、稳健性和抗振动性尤为重要。本文描述了一种近红外(850-1700 nm)光谱传感的方法,该方法使用基于完全集成的多像素探测器阵列的手持传感器模块,其占地面积约为2×2 mm2。光谱传感器模块的功能最近在两个应用案例中进行了评估:原料牛奶中脂肪百分比的量化和塑料类型的分类。脂肪定量预测均方根误差(RMSE)为0.14%,塑料类型分类对未知样本的预测精度为100%。结果表明,集成传感器采用的直接近红外传感方法是可行的,具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip
Near-infrared (NIR) spectroscopy is widely used for the classification of materials and the quantification of their properties. Today, there is a high demand for extending the use of this technique to portable applications, and eventually, the integration with consumer appliances and smartphones. To reach this goal, the overall size of the NIR sensor, its production cost, robustness, and resistance to vibrations are of particular importance. This paper describes an approach to spectral sensing in the NIR (850–1700 nm) using a handheld sensor module based on a fully integrated multipixel detector array with a footprint of around 2×2 mm2. The capabilities of the spectral sensor module were recently evaluated in two application cases: Quantification of the fat percentage in raw milk and the classification of plastic types. Fat quantification was achieved with a root mean square error (RMSE) of prediction of 0.14% and classification of plastic types was achieved with a prediction accuracy on unknown samples of 100%. The results demonstrate the feasibility of the direct NIR sensing approach used by the integrated sensor, which has potential to be used in a variety of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spectroscopy
Spectroscopy 物理-光谱学
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: Spectroscopy welcomes manuscripts that describe techniques and applications of all forms of spectroscopy and that are of immediate interest to users in industry, academia, and government.
期刊最新文献
Hyperspectral Imaging Combined with Convolutional Neural Network for Rapid and Accurate Evaluation of Tilapia Fillet Freshness Simple Spectrometer System, Simple Validation? High-Resolution High-Speed LIBS Microscopy Inorganics I: Introduction Raman Spectra Used to Understand the Origins of Banding in Spherulites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1