泊松尺寸偏倚林德利分布及其应用

S. Dar, Anwar Hassan, P. B. Ahmad
{"title":"泊松尺寸偏倚林德利分布及其应用","authors":"S. Dar, Anwar Hassan, P. B. Ahmad","doi":"10.1142/s1793962322500313","DOIUrl":null,"url":null,"abstract":"In this paper, a new model for count data is introduced by compounding the Poisson distribution with size-biased three-parameter Lindley distribution. Statistical properties, such as reliability, hazard rate, reverse hazard rate, Mills ratio, moments, shewness, kurtosis, moment genrating function, probability generating function and order statistics, have been discussed. Moreover, the collective risk model is discussed by considering the proposed distrubution as the primary distribution and the expoential and Erlang distributions as the secondary ones. Parameter estimation is done using maximum likelihood estimation (MLE). Finally a real dataset is discussed to demonstrate the suitability and applicability of the proposed distribution in modeling count dataset.","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"13 1","pages":"2250031:1-2250031:19"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poisson size-biased Lindley distribution and its applications\",\"authors\":\"S. Dar, Anwar Hassan, P. B. Ahmad\",\"doi\":\"10.1142/s1793962322500313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new model for count data is introduced by compounding the Poisson distribution with size-biased three-parameter Lindley distribution. Statistical properties, such as reliability, hazard rate, reverse hazard rate, Mills ratio, moments, shewness, kurtosis, moment genrating function, probability generating function and order statistics, have been discussed. Moreover, the collective risk model is discussed by considering the proposed distrubution as the primary distribution and the expoential and Erlang distributions as the secondary ones. Parameter estimation is done using maximum likelihood estimation (MLE). Finally a real dataset is discussed to demonstrate the suitability and applicability of the proposed distribution in modeling count dataset.\",\"PeriodicalId\":13657,\"journal\":{\"name\":\"Int. J. Model. Simul. Sci. Comput.\",\"volume\":\"13 1\",\"pages\":\"2250031:1-2250031:19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Model. Simul. Sci. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793962322500313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Model. Simul. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793962322500313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将泊松分布与尺寸偏置的三参数林德利分布复合,提出了一种新的计数数据模型。讨论了可靠性、危险率、逆向危险率、米尔斯比、矩、清晰度、峰度、矩生成函数、概率生成函数和序统计量等统计性质。在此基础上,以提出的分布为主要分布,以指数分布和Erlang分布为次要分布,讨论了集体风险模型。参数估计采用最大似然估计(MLE)。最后以一个实际数据集为例,验证了所提出的分布在计数数据集建模中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poisson size-biased Lindley distribution and its applications
In this paper, a new model for count data is introduced by compounding the Poisson distribution with size-biased three-parameter Lindley distribution. Statistical properties, such as reliability, hazard rate, reverse hazard rate, Mills ratio, moments, shewness, kurtosis, moment genrating function, probability generating function and order statistics, have been discussed. Moreover, the collective risk model is discussed by considering the proposed distrubution as the primary distribution and the expoential and Erlang distributions as the secondary ones. Parameter estimation is done using maximum likelihood estimation (MLE). Finally a real dataset is discussed to demonstrate the suitability and applicability of the proposed distribution in modeling count dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of the drift and diffusion of marine oil spill under the effect of wind, current and tides Detection and recognition of dim and small targets in sea clutter background based on polarization decomposition Intelligent generation of combat simulation scenarios based on UML diagram recognition Visualization of relevant parameter dependencies in a delay SEIQ epidemic model - A live script program for didactic and interactive demonstrations A study on shipowner's behavior intention to cross dam by integrating SEM-SD model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1