磁感磁共振成像十二指肠镜

IF 6.7 1区 计算机科学 Q1 Physics and Astronomy Progress in Electromagnetics Research-Pier Pub Date : 2017-01-01 DOI:10.2528/PIER17062104
R. Syms, E. Kardoulaki, M. Rea, K. Choonee, S. Taylor-Robinson, C. Wadsworth, I. Young
{"title":"磁感磁共振成像十二指肠镜","authors":"R. Syms, E. Kardoulaki, M. Rea, K. Choonee, S. Taylor-Robinson, C. Wadsworth, I. Young","doi":"10.2528/PIER17062104","DOIUrl":null,"url":null,"abstract":"A magnetic resonance imaging (MRI) duodenoscope is demonstrated, by combining non magnetic endoscope components with a thin - film receiver based on a magneto - inductive waveguide. The waveguide elements consist of figure - of - eight shaped inductors formed on either side of a flexible substrate and parallel plate capacitors that use the substrate as a dielectric. Operation is simulated using equivalent circuit models and by computation of two and three - dimensional sensitivity patterns. Circuits are fabricated for operation at 127.7 MHz by double - sided patterning of copper - clad Kapton and assembled on to non - magnetic flexible endoscope insertion tubes. Operation is verified by bench testing and by 1 H MRI at 3T using phantoms. The receiver can form a segmented coaxial image along the length of the endoscope, even when bent, and shows a signal - to - noise - ra tio advantage over a surface array coil up to three times the tube diameter at the tip. Initial immersion imaging experiments have been carried out and confirm an encouraging lack of sensitivity to RF heating.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"24 1","pages":"125-138"},"PeriodicalIF":6.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Magneto-Inductive Magnetic Resonance Imaging Duodenoscope\",\"authors\":\"R. Syms, E. Kardoulaki, M. Rea, K. Choonee, S. Taylor-Robinson, C. Wadsworth, I. Young\",\"doi\":\"10.2528/PIER17062104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A magnetic resonance imaging (MRI) duodenoscope is demonstrated, by combining non magnetic endoscope components with a thin - film receiver based on a magneto - inductive waveguide. The waveguide elements consist of figure - of - eight shaped inductors formed on either side of a flexible substrate and parallel plate capacitors that use the substrate as a dielectric. Operation is simulated using equivalent circuit models and by computation of two and three - dimensional sensitivity patterns. Circuits are fabricated for operation at 127.7 MHz by double - sided patterning of copper - clad Kapton and assembled on to non - magnetic flexible endoscope insertion tubes. Operation is verified by bench testing and by 1 H MRI at 3T using phantoms. The receiver can form a segmented coaxial image along the length of the endoscope, even when bent, and shows a signal - to - noise - ra tio advantage over a surface array coil up to three times the tube diameter at the tip. Initial immersion imaging experiments have been carried out and confirm an encouraging lack of sensitivity to RF heating.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"24 1\",\"pages\":\"125-138\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/PIER17062104\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER17062104","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 8

摘要

通过将非磁性内窥镜组件与基于磁感应波导的薄膜接收器相结合,演示了一种磁共振成像(MRI)十二指肠镜。波导元件由形成在柔性衬底两侧的8字形电感器和使用衬底作为电介质的平行板电容器组成。使用等效电路模型和计算二维和三维灵敏度图来模拟操作。在127.7兆赫的工作频率下,采用双面覆铜卡普顿制作电路,并将其组装在非磁性柔性内窥镜插入管上。操作通过台架测试和1 H MRI在3T使用幻影进行验证。即使在弯曲的情况下,接收器也能沿着内窥镜的长度形成分段的同轴图像,并且与表面阵列线圈相比,在尖端处的信噪比可达管径的三倍。初步的浸入式成像实验已经进行,并证实了令人鼓舞的缺乏灵敏度的射频加热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magneto-Inductive Magnetic Resonance Imaging Duodenoscope
A magnetic resonance imaging (MRI) duodenoscope is demonstrated, by combining non magnetic endoscope components with a thin - film receiver based on a magneto - inductive waveguide. The waveguide elements consist of figure - of - eight shaped inductors formed on either side of a flexible substrate and parallel plate capacitors that use the substrate as a dielectric. Operation is simulated using equivalent circuit models and by computation of two and three - dimensional sensitivity patterns. Circuits are fabricated for operation at 127.7 MHz by double - sided patterning of copper - clad Kapton and assembled on to non - magnetic flexible endoscope insertion tubes. Operation is verified by bench testing and by 1 H MRI at 3T using phantoms. The receiver can form a segmented coaxial image along the length of the endoscope, even when bent, and shows a signal - to - noise - ra tio advantage over a surface array coil up to three times the tube diameter at the tip. Initial immersion imaging experiments have been carried out and confirm an encouraging lack of sensitivity to RF heating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
3.00%
发文量
0
审稿时长
1.3 months
期刊介绍: Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.
期刊最新文献
L-BAND RADAR SCATTERING AND SOIL MOISTURE RETRIEVAL OF WHEAT, CANOLA AND PASTURE FIELDS FOR SMAP ACTIVE ALGORITHMS DESIGNING NANOINCLUSIONS FOR QUANTUM SENSING BASED ON ELECTROMAGNETIC SCATTERING FORMALISM (INVITED PAPER) A FINE SCALE PARTIALLY COHERENT PATCH MODEL INCLUDING TOPOGRAPHICAL EFFECTS FOR GNSS-R DDM SIMULATIONS Directional Polaritonic Excitation of Circular, Huygens and Janus Dipoles in Graphene-Hexagonal Boron Nitride Heterostructures HIGH EFFICIENCY MULTI-FUNCTIONAL ALL-OPTICAL LOGIC GATES BASED ON MIM PLASMONIC WAVEGUIDE STRUCTURE WITH THE KERR-TYPE NONLINEAR NANO-RING RESONATORS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1