改进参数的新型农村电网电力变压器

M. A. Prishchepov, A. I. Zelenkevich, V. M. Zbrodyga
{"title":"改进参数的新型农村电网电力变压器","authors":"M. A. Prishchepov, A. I. Zelenkevich, V. M. Zbrodyga","doi":"10.29235/1817-7204-2021-59-3-366-377","DOIUrl":null,"url":null,"abstract":"The problem of power quality supply is relevant for rural electrical networks, due to long distance and branching, as well as connection of a large number of single-phase and non-linear loads. Asymmetry of electrical loads causes voltage asymmetry, which adversely affects the operation of all elements of the electrical system, causing additional power losses, reducing the service life of electrical equipment and its economic performance, as well as reliability of operation of individual electrical equipment and power supply system as a whole. Reduction of voltage asymmetry can be ensured by rational construction of electrical network circuit and use of special correcting devices. The authors consider it reasonable to use relatively simple and reliable by design and inexpensive power transformers with a “star - double zigzag with a zero wire” (Y/2Zн) winding connection circuit with a neutral winding connection group. The paper deals with design and processes of converting electrical energy in a transformer. It has been proved that phase EMF of the secondary winding coincides in phase with the same EMF of the primary winding, i.e. the proposed circuit has a neutral windings’ connection group. Results of theoretical studies of transformer operation with an asymmetric and non-linear load are presented. Decrease in voltage asymmetry is due to the neutral sequence components compensation. Decrease of the higher harmonic voltage components level occurs due to the compensation of the higher harmonics multiplied three times. It is theoretically substantiated that transformer will not emit higher harmonic components of zero sequence voltages into the supply network. Experimental studies have confirmed the theoretical conclusions that a transformer with Y/2Zн winding connection circuit allows obtaining the highest level of voltage symmetry with an asymmetric load. In single-phase load mode, the values of voltage unbalance factor in reverse sequence do not exceed 1.7 %, in neutral sequence - 2.9 %. The transformer allows obtaining 1.2-1.5 times lower value of total harmonic components factor at non-linear load, which is the best result among circuits studied. This power transformer is resistant to load effects that distort voltage quality and is capable to provide a high level of symmetry and sinusoidal voltage as well as parallel operation with commercially available transformers. This makes it possible to use it in rural electrical networks to reduce power losses, increase service life and efficiency of electrical equipment, and increase reliability of the power supply system.","PeriodicalId":41146,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus-Agrarian Series","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced power transformer with improved parameters for rural electrical networks\",\"authors\":\"M. A. Prishchepov, A. I. Zelenkevich, V. M. Zbrodyga\",\"doi\":\"10.29235/1817-7204-2021-59-3-366-377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of power quality supply is relevant for rural electrical networks, due to long distance and branching, as well as connection of a large number of single-phase and non-linear loads. Asymmetry of electrical loads causes voltage asymmetry, which adversely affects the operation of all elements of the electrical system, causing additional power losses, reducing the service life of electrical equipment and its economic performance, as well as reliability of operation of individual electrical equipment and power supply system as a whole. Reduction of voltage asymmetry can be ensured by rational construction of electrical network circuit and use of special correcting devices. The authors consider it reasonable to use relatively simple and reliable by design and inexpensive power transformers with a “star - double zigzag with a zero wire” (Y/2Zн) winding connection circuit with a neutral winding connection group. The paper deals with design and processes of converting electrical energy in a transformer. It has been proved that phase EMF of the secondary winding coincides in phase with the same EMF of the primary winding, i.e. the proposed circuit has a neutral windings’ connection group. Results of theoretical studies of transformer operation with an asymmetric and non-linear load are presented. Decrease in voltage asymmetry is due to the neutral sequence components compensation. Decrease of the higher harmonic voltage components level occurs due to the compensation of the higher harmonics multiplied three times. It is theoretically substantiated that transformer will not emit higher harmonic components of zero sequence voltages into the supply network. Experimental studies have confirmed the theoretical conclusions that a transformer with Y/2Zн winding connection circuit allows obtaining the highest level of voltage symmetry with an asymmetric load. In single-phase load mode, the values of voltage unbalance factor in reverse sequence do not exceed 1.7 %, in neutral sequence - 2.9 %. The transformer allows obtaining 1.2-1.5 times lower value of total harmonic components factor at non-linear load, which is the best result among circuits studied. This power transformer is resistant to load effects that distort voltage quality and is capable to provide a high level of symmetry and sinusoidal voltage as well as parallel operation with commercially available transformers. This makes it possible to use it in rural electrical networks to reduce power losses, increase service life and efficiency of electrical equipment, and increase reliability of the power supply system.\",\"PeriodicalId\":41146,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of Belarus-Agrarian Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of Belarus-Agrarian Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1817-7204-2021-59-3-366-377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus-Agrarian Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1817-7204-2021-59-3-366-377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于农村电网距离长、分支多,且接入大量单相和非线性负荷,供电质量问题与农村电网息息相关。电力负荷的不对称导致电压的不对称,对电力系统各要素的运行产生不利影响,造成额外的功率损耗,降低电气设备的使用寿命和经济性能,降低单个电气设备和整个供电系统的运行可靠性。通过合理的电网电路结构和使用特殊的纠偏装置,可以保证电压不对称的减小。作者认为,采用中性绕组连接组的“星形-双之字形零线”(Y/ 2zz)绕组连接电路是合理的,其设计相对简单可靠,价格低廉。本文讨论了变压器电能转换的设计和过程。证明了次级绕组的相位电动势与初级绕组的相同电动势相重合,即所提出的电路具有中性绕组的连接组。给出了不对称和非线性负荷下变压器运行的理论研究结果。电压不对称的减小是由于中性序分量的补偿。由于高次谐波的补偿乘以三倍,高次谐波电压分量电平降低。从理论上证实了变压器不会向供电网络发射零序电压的高次谐波分量。实验研究证实了理论结论,即采用Y/ 2zzn绕组连接电路的变压器可以在不对称负载下获得最高水平的电压对称性。在单相负载模式下,反向顺序电压不平衡系数不超过1.7%,中性点顺序- 2.9%。该变压器在非线性负载下总谐波分量因数降低1.2 ~ 1.5倍,是所研究电路中效果最好的。这种电力变压器能够抵抗负载影响,扭曲电压质量,能够提供高水平的对称和正弦电压,以及与市售变压器并联运行。这使得在农村电网中使用它可以减少电力损耗,提高电气设备的使用寿命和效率,提高供电系统的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced power transformer with improved parameters for rural electrical networks
The problem of power quality supply is relevant for rural electrical networks, due to long distance and branching, as well as connection of a large number of single-phase and non-linear loads. Asymmetry of electrical loads causes voltage asymmetry, which adversely affects the operation of all elements of the electrical system, causing additional power losses, reducing the service life of electrical equipment and its economic performance, as well as reliability of operation of individual electrical equipment and power supply system as a whole. Reduction of voltage asymmetry can be ensured by rational construction of electrical network circuit and use of special correcting devices. The authors consider it reasonable to use relatively simple and reliable by design and inexpensive power transformers with a “star - double zigzag with a zero wire” (Y/2Zн) winding connection circuit with a neutral winding connection group. The paper deals with design and processes of converting electrical energy in a transformer. It has been proved that phase EMF of the secondary winding coincides in phase with the same EMF of the primary winding, i.e. the proposed circuit has a neutral windings’ connection group. Results of theoretical studies of transformer operation with an asymmetric and non-linear load are presented. Decrease in voltage asymmetry is due to the neutral sequence components compensation. Decrease of the higher harmonic voltage components level occurs due to the compensation of the higher harmonics multiplied three times. It is theoretically substantiated that transformer will not emit higher harmonic components of zero sequence voltages into the supply network. Experimental studies have confirmed the theoretical conclusions that a transformer with Y/2Zн winding connection circuit allows obtaining the highest level of voltage symmetry with an asymmetric load. In single-phase load mode, the values of voltage unbalance factor in reverse sequence do not exceed 1.7 %, in neutral sequence - 2.9 %. The transformer allows obtaining 1.2-1.5 times lower value of total harmonic components factor at non-linear load, which is the best result among circuits studied. This power transformer is resistant to load effects that distort voltage quality and is capable to provide a high level of symmetry and sinusoidal voltage as well as parallel operation with commercially available transformers. This makes it possible to use it in rural electrical networks to reduce power losses, increase service life and efficiency of electrical equipment, and increase reliability of the power supply system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
37
期刊最新文献
Effect of concentration of deodorizing reagents on the emission of odor-forming substances in pork manure Led lighting intensity effect on biochemical composition of microgreens of white cabbage Plowing operation: labor productivity and specific operating costs. Part 1. Multifactor simulation of plowing operation Sowing time of winter crops in Belarus and recommendation for optimization in conditions of modern climate change Phytopathological situation in crops of spring wheat varieties in Belarus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1