{"title":"通过推广空间金字塔,利用摄影风格进行类别级图像分类","authors":"J. V. Gemert","doi":"10.1145/1991996.1992010","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of photographic style for category-level image classification. Specifically, we exploit the assumption that images within a category share a similar style defined by attributes such as colorfulness, lighting, depth of field, viewpoint and saliency. For these style attributes we create correspondences across images by a generalized spatial pyramid matching scheme. Where the spatial pyramid groups features spatially, we allow more general feature grouping and in this paper we focus on grouping images on photographic style. We evaluate our approach in an object classification task and investigate style differences between professional and amateur photographs. We show that a generalized pyramid with style-based attributes improves performance on the professional Corel and amateur Pascal VOC 2009 image datasets.","PeriodicalId":93291,"journal":{"name":"ICMR'17 : proceedings of the 2017 ACM International Conference on Multimedia Retrieval : June 6-9, 2017, Bucharest, Romania. ACM International Conference on Multimedia Retrieval (2017 : Bucharest, Romania)","volume":"118 1","pages":"14"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Exploiting photographic style for category-level image classification by generalizing the spatial pyramid\",\"authors\":\"J. V. Gemert\",\"doi\":\"10.1145/1991996.1992010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the use of photographic style for category-level image classification. Specifically, we exploit the assumption that images within a category share a similar style defined by attributes such as colorfulness, lighting, depth of field, viewpoint and saliency. For these style attributes we create correspondences across images by a generalized spatial pyramid matching scheme. Where the spatial pyramid groups features spatially, we allow more general feature grouping and in this paper we focus on grouping images on photographic style. We evaluate our approach in an object classification task and investigate style differences between professional and amateur photographs. We show that a generalized pyramid with style-based attributes improves performance on the professional Corel and amateur Pascal VOC 2009 image datasets.\",\"PeriodicalId\":93291,\"journal\":{\"name\":\"ICMR'17 : proceedings of the 2017 ACM International Conference on Multimedia Retrieval : June 6-9, 2017, Bucharest, Romania. ACM International Conference on Multimedia Retrieval (2017 : Bucharest, Romania)\",\"volume\":\"118 1\",\"pages\":\"14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICMR'17 : proceedings of the 2017 ACM International Conference on Multimedia Retrieval : June 6-9, 2017, Bucharest, Romania. ACM International Conference on Multimedia Retrieval (2017 : Bucharest, Romania)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1991996.1992010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMR'17 : proceedings of the 2017 ACM International Conference on Multimedia Retrieval : June 6-9, 2017, Bucharest, Romania. ACM International Conference on Multimedia Retrieval (2017 : Bucharest, Romania)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

本文研究了摄影风格在类别级图像分类中的应用。具体来说,我们利用了一个假设,即一个类别内的图像共享由色彩、照明、景深、视点和显着性等属性定义的相似风格。对于这些样式属性,我们通过一个广义的空间金字塔匹配方案在图像之间创建对应关系。在空间金字塔群的空间特征中,我们允许更一般的特征分组,在本文中,我们将重点放在对摄影风格的图像分组上。我们在对象分类任务中评估我们的方法,并调查专业和业余照片之间的风格差异。我们证明了一个基于风格属性的广义金字塔可以提高专业Corel和业余Pascal VOC 2009图像数据集的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting photographic style for category-level image classification by generalizing the spatial pyramid
This paper investigates the use of photographic style for category-level image classification. Specifically, we exploit the assumption that images within a category share a similar style defined by attributes such as colorfulness, lighting, depth of field, viewpoint and saliency. For these style attributes we create correspondences across images by a generalized spatial pyramid matching scheme. Where the spatial pyramid groups features spatially, we allow more general feature grouping and in this paper we focus on grouping images on photographic style. We evaluate our approach in an object classification task and investigate style differences between professional and amateur photographs. We show that a generalized pyramid with style-based attributes improves performance on the professional Corel and amateur Pascal VOC 2009 image datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Making a Cultural Visit with a Smart Mate Session details: Posters Health Multimedia: Lifestyle Recommendations Based on Diverse Observations. Exploiting photographic style for category-level image classification by generalizing the spatial pyramid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1