剪切载荷下碳纤维增强复合材料板的微可见冲击损伤数值评估

J. Šedek, P. Bělský
{"title":"剪切载荷下碳纤维增强复合材料板的微可见冲击损伤数值评估","authors":"J. Šedek, P. Bělský","doi":"10.2495/MC170081","DOIUrl":null,"url":null,"abstract":"Impact by foreign objects is a concern for most composite structures, requiring attention in damage threat assessment. The purpose is to identify impact damage severity and detectability for design and maintenance. Barely visible impact damage (BVID) requires special treatment due to the difficulties in detecting it by any visual inspection method. BVID can reduce the load-carrying capability of a composite structure and, therefore, it can cause severe damage. The low-velocity impact causing BVID in a composite panel was studied via a numerical method using finite elements (FEs) with the explicit dynamic integration method. A ply-by-ply three-dimensional model with cohesive zone behavior of interaction was created, enabling a detailed study of material degradation through composite thickness. Two cases with double impact and with no impact were analyzed. Impacts directed near the hole’s edge caused delamination and ply degradation. Subsequently applied shear loading shows the impact influence on the strength of the panel. The numerical results confirm a decrease in the strength of the composite panel after impact, as expected, but differences in displacement behavior were also observed. According to the FE solution, buckling appears in regions of impact before rupture, while test results reported rapid failures in the compression zone and tension zone, independently, in two stages. On the other hand, the FE results of the non-impacted panel show two independent failures, as observed experimentally. As a result, the unrealistic buckling is attributed to a decrease in element stiffness during impact. In conclusion, the final strength of the impacted panel was predicted by the FE solution sufficiently. The BVID modelling approach presented in this study is useful in the case of small-scale models such as a flat panel. The research has received funding from the European Union’s Seventh Framework Programme for Research, Technological Development and Demonstration within CANAL (CreAting NonconventionAl Laminates) project under grant agreement number 605583.","PeriodicalId":23647,"journal":{"name":"WIT transactions on engineering sciences","volume":"1 1","pages":"73-85"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"NUMERICAL EVALUATION OF BARELY VISIBLE IMPACT DAMAGE IN A CARBON FIBRE-REINFORCED COMPOSITE PANEL WITH SHEAR LOADING\",\"authors\":\"J. Šedek, P. Bělský\",\"doi\":\"10.2495/MC170081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Impact by foreign objects is a concern for most composite structures, requiring attention in damage threat assessment. The purpose is to identify impact damage severity and detectability for design and maintenance. Barely visible impact damage (BVID) requires special treatment due to the difficulties in detecting it by any visual inspection method. BVID can reduce the load-carrying capability of a composite structure and, therefore, it can cause severe damage. The low-velocity impact causing BVID in a composite panel was studied via a numerical method using finite elements (FEs) with the explicit dynamic integration method. A ply-by-ply three-dimensional model with cohesive zone behavior of interaction was created, enabling a detailed study of material degradation through composite thickness. Two cases with double impact and with no impact were analyzed. Impacts directed near the hole’s edge caused delamination and ply degradation. Subsequently applied shear loading shows the impact influence on the strength of the panel. The numerical results confirm a decrease in the strength of the composite panel after impact, as expected, but differences in displacement behavior were also observed. According to the FE solution, buckling appears in regions of impact before rupture, while test results reported rapid failures in the compression zone and tension zone, independently, in two stages. On the other hand, the FE results of the non-impacted panel show two independent failures, as observed experimentally. As a result, the unrealistic buckling is attributed to a decrease in element stiffness during impact. In conclusion, the final strength of the impacted panel was predicted by the FE solution sufficiently. The BVID modelling approach presented in this study is useful in the case of small-scale models such as a flat panel. The research has received funding from the European Union’s Seventh Framework Programme for Research, Technological Development and Demonstration within CANAL (CreAting NonconventionAl Laminates) project under grant agreement number 605583.\",\"PeriodicalId\":23647,\"journal\":{\"name\":\"WIT transactions on engineering sciences\",\"volume\":\"1 1\",\"pages\":\"73-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIT transactions on engineering sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/MC170081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIT transactions on engineering sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/MC170081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

对于大多数复合材料结构来说,外来物冲击是一个值得关注的问题,需要在损伤威胁评估中予以重视。目的是确定冲击损伤的严重程度和可检测性,以便设计和维护。几乎不可见的冲击损伤(BVID)需要特殊的处理,因为它很难被任何视觉检测方法检测到。BVID会降低复合材料结构的承载能力,从而造成严重的破坏。采用显式动力积分法,采用有限元方法对复合材料板的低速碰撞产生的BVID进行了数值研究。建立了具有黏聚区相互作用行为的层-层三维模型,实现了通过复合材料厚度对材料降解的详细研究。分析了双冲击和无冲击两例。靠近孔边缘的冲击导致分层和层厚退化。随后施加的剪切载荷显示了对面板强度的冲击影响。数值结果证实了撞击后复合材料板的强度下降,正如预期的那样,但位移行为也有所不同。根据有限元解,在破裂之前,在冲击区域出现屈曲,而测试结果显示压缩区和拉伸区分别在两个阶段快速破坏。另一方面,非冲击板的有限元结果显示了两个独立的破坏,正如实验所观察到的那样。因此,不现实的屈曲可归因于冲击过程中元件刚度的降低。综上所述,有限元解能较好地预测冲击板的最终强度。本研究中提出的BVID建模方法在小型模型(如平板)的情况下是有用的。这项研究得到了欧洲联盟第七框架方案在CANAL(创造非常规层压板)项目内的研究、技术发展和示范的资助,赠款协议号为605583。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NUMERICAL EVALUATION OF BARELY VISIBLE IMPACT DAMAGE IN A CARBON FIBRE-REINFORCED COMPOSITE PANEL WITH SHEAR LOADING
Impact by foreign objects is a concern for most composite structures, requiring attention in damage threat assessment. The purpose is to identify impact damage severity and detectability for design and maintenance. Barely visible impact damage (BVID) requires special treatment due to the difficulties in detecting it by any visual inspection method. BVID can reduce the load-carrying capability of a composite structure and, therefore, it can cause severe damage. The low-velocity impact causing BVID in a composite panel was studied via a numerical method using finite elements (FEs) with the explicit dynamic integration method. A ply-by-ply three-dimensional model with cohesive zone behavior of interaction was created, enabling a detailed study of material degradation through composite thickness. Two cases with double impact and with no impact were analyzed. Impacts directed near the hole’s edge caused delamination and ply degradation. Subsequently applied shear loading shows the impact influence on the strength of the panel. The numerical results confirm a decrease in the strength of the composite panel after impact, as expected, but differences in displacement behavior were also observed. According to the FE solution, buckling appears in regions of impact before rupture, while test results reported rapid failures in the compression zone and tension zone, independently, in two stages. On the other hand, the FE results of the non-impacted panel show two independent failures, as observed experimentally. As a result, the unrealistic buckling is attributed to a decrease in element stiffness during impact. In conclusion, the final strength of the impacted panel was predicted by the FE solution sufficiently. The BVID modelling approach presented in this study is useful in the case of small-scale models such as a flat panel. The research has received funding from the European Union’s Seventh Framework Programme for Research, Technological Development and Demonstration within CANAL (CreAting NonconventionAl Laminates) project under grant agreement number 605583.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
ACCURATE FAST MULTIPOLE SCHEME FOR THE BOUNDARY ELEMENT ANALYSIS OF THREE-DIMENSIONAL LINEAR POTENTIAL PROBLEMS CHARACTERIZATION OF VECTOR FIELDS BASED ON AN ANALYSIS OF THEIR LOCAL EXPANSIONS FINITE LINE METHOD FOR SOLVING CONVECTION–DIFFUSION EQUATIONS IMPLICATIONS OF STOKES–CARTAN THEOREM TO TIME-HARMONIC ACOUSTIC BOUNDARY INTEGRAL EQUATION FORMULATIONS RECENT ADVANCES IN LOCALIZED COLLOCATION SOLVERS BASED ON SEMI-ANALYTICAL BASIS FUNCTIONS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1