{"title":"弹性变形对微腔链色散特性的影响","authors":"Rumyantsev V, Aparajita U, Roslyak O","doi":"10.4172/2469-410X.1000165","DOIUrl":null,"url":null,"abstract":"We study electromagnetic excitations in non-ideal 1D microcavity lattice with the use of the virtual crystal approximation. The effect of elastic deformation on the excitation spectrum of a microcavity chain is numerically modeled for 1D non-ideal microcavity supercrystal containing quantum dots and without them. The adopted approach helps us obtain the dispersion dependence of collective excitation frequencies and the energy. The analytical expressions for polaritonic frequencies, effective mass and group velocities as functions of corresponding quantum dots and vacancies concentrations are obtained.","PeriodicalId":92245,"journal":{"name":"Journal of lasers, optics & photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Elastic Deformation on the Dispersion Characteristics of a Chain of Microcavities\",\"authors\":\"Rumyantsev V, Aparajita U, Roslyak O\",\"doi\":\"10.4172/2469-410X.1000165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study electromagnetic excitations in non-ideal 1D microcavity lattice with the use of the virtual crystal approximation. The effect of elastic deformation on the excitation spectrum of a microcavity chain is numerically modeled for 1D non-ideal microcavity supercrystal containing quantum dots and without them. The adopted approach helps us obtain the dispersion dependence of collective excitation frequencies and the energy. The analytical expressions for polaritonic frequencies, effective mass and group velocities as functions of corresponding quantum dots and vacancies concentrations are obtained.\",\"PeriodicalId\":92245,\"journal\":{\"name\":\"Journal of lasers, optics & photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of lasers, optics & photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2469-410X.1000165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers, optics & photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-410X.1000165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Elastic Deformation on the Dispersion Characteristics of a Chain of Microcavities
We study electromagnetic excitations in non-ideal 1D microcavity lattice with the use of the virtual crystal approximation. The effect of elastic deformation on the excitation spectrum of a microcavity chain is numerically modeled for 1D non-ideal microcavity supercrystal containing quantum dots and without them. The adopted approach helps us obtain the dispersion dependence of collective excitation frequencies and the energy. The analytical expressions for polaritonic frequencies, effective mass and group velocities as functions of corresponding quantum dots and vacancies concentrations are obtained.