移动机器人监视群的自主控制律

R. Mullen, D. Monekosso, S. Barman, Paolo Remagnino
{"title":"移动机器人监视群的自主控制律","authors":"R. Mullen, D. Monekosso, S. Barman, Paolo Remagnino","doi":"10.1109/CISDA.2009.5356555","DOIUrl":null,"url":null,"abstract":"We investigate the use of artificial local forces governed by physics laws for the spatial formation and coordination of a swarm of VTOL UAVs for ground area surveillance applications. Varying parameter effects are investigated through simulation and a learning algorithm is introduced to optimise the swarms behaviour with respect to self-organising into the optimum formation for a given sized ROI to cover collectively.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"23 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Autonomous control laws for mobile robotic surveillance swarms\",\"authors\":\"R. Mullen, D. Monekosso, S. Barman, Paolo Remagnino\",\"doi\":\"10.1109/CISDA.2009.5356555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the use of artificial local forces governed by physics laws for the spatial formation and coordination of a swarm of VTOL UAVs for ground area surveillance applications. Varying parameter effects are investigated through simulation and a learning algorithm is introduced to optimise the swarms behaviour with respect to self-organising into the optimum formation for a given sized ROI to cover collectively.\",\"PeriodicalId\":6407,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"volume\":\"23 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISDA.2009.5356555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了由物理定律控制的人工局部力的使用,用于地面区域监视应用的一群垂直起降无人机的空间形成和协调。通过模拟研究了不同参数的影响,并引入了一种学习算法来优化群体的自组织行为,使其成为给定大小的ROI覆盖的最佳编队。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous control laws for mobile robotic surveillance swarms
We investigate the use of artificial local forces governed by physics laws for the spatial formation and coordination of a swarm of VTOL UAVs for ground area surveillance applications. Varying parameter effects are investigated through simulation and a learning algorithm is introduced to optimise the swarms behaviour with respect to self-organising into the optimum formation for a given sized ROI to cover collectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolving spiking neural networks: A novel growth algorithm corrects the teacher Emitter geolocation using low-accuracy direction-finding sensors Secure two and multi-party association rule mining Passive multitarget tracking using transmitters of opportunity Bias phenomenon and analysis of a nonlinear transformation in a mobile passive sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1