{"title":"原子发射光谱中基于溶液的辉光放电技术已经成熟","authors":"N. Hazel, J. Orejas, S. Ray","doi":"10.56530/spectroscopy.no9482l2","DOIUrl":null,"url":null,"abstract":"The solution-cathode glow discharge (SCGD) is a low-power, atmospheric-pressure, ambient-atmosphere microplasma that is proving to be a proficient excitation source for atomic emission spectroscopy (AES). The analytical figures of merit of SCGD-AES experiments often compete with established, conventional approaches despite the fact that it is a simple, small, low-cost instrument. The operating principles of the SCGD are reviewed here, including experimental operating parameters, plasma conditions, analytical performance, matrix interferences, and application examples.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"8 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution-Based Glow Discharges for Atomic Emission Spectroscopy Come of Age\",\"authors\":\"N. Hazel, J. Orejas, S. Ray\",\"doi\":\"10.56530/spectroscopy.no9482l2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solution-cathode glow discharge (SCGD) is a low-power, atmospheric-pressure, ambient-atmosphere microplasma that is proving to be a proficient excitation source for atomic emission spectroscopy (AES). The analytical figures of merit of SCGD-AES experiments often compete with established, conventional approaches despite the fact that it is a simple, small, low-cost instrument. The operating principles of the SCGD are reviewed here, including experimental operating parameters, plasma conditions, analytical performance, matrix interferences, and application examples.\",\"PeriodicalId\":21957,\"journal\":{\"name\":\"Spectroscopy\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.56530/spectroscopy.no9482l2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.56530/spectroscopy.no9482l2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Solution-Based Glow Discharges for Atomic Emission Spectroscopy Come of Age
The solution-cathode glow discharge (SCGD) is a low-power, atmospheric-pressure, ambient-atmosphere microplasma that is proving to be a proficient excitation source for atomic emission spectroscopy (AES). The analytical figures of merit of SCGD-AES experiments often compete with established, conventional approaches despite the fact that it is a simple, small, low-cost instrument. The operating principles of the SCGD are reviewed here, including experimental operating parameters, plasma conditions, analytical performance, matrix interferences, and application examples.
期刊介绍:
Spectroscopy welcomes manuscripts that describe techniques and applications of all forms of spectroscopy and that are of immediate interest to users in industry, academia, and government.