信用风险应用出现自激跳跃的传染过程

IF 1.1 2区 经济学 Q3 BUSINESS, FINANCE Finance and Stochastics Pub Date : 2022-02-08 DOI:10.1080/17442508.2022.2041641
P. Pasricha, Dharmaraja Selvamuthu, Selvaraju Natarajan
{"title":"信用风险应用出现自激跳跃的传染过程","authors":"P. Pasricha, Dharmaraja Selvamuthu, Selvaraju Natarajan","doi":"10.1080/17442508.2022.2041641","DOIUrl":null,"url":null,"abstract":"The modeling of the probability of joint default or total number of defaults among the firms is one of the crucial problems to mitigate the credit risk since the default correlations significantly affect the portfolio loss distribution and hence play a significant role in allocating capital for solvency purposes. In this article, we derive a closed-form expression for the default probability of a single firm and probability of the total number of defaults by time $t$ in a homogeneous portfolio. We use a contagion process to model the arrival of credit events causing the default and develop a framework that allows firms to have resistance against default unlike the standard intensity-based models. We assume the point process driving the credit events is composed of a systematic and an idiosyncratic component, whose intensities are independently specified by a mean-reverting affine jump-diffusion process with self-exciting jumps. The proposed framework is competent of capturing the feedback effect. We further demonstrate how the proposed framework can be used to price synthetic collateralized debt obligation (CDO). Finally, we present the sensitivity analysis to demonstrate the effect of different parameters governing the contagion effect on the spread of tranches and the expected loss of the CDO.","PeriodicalId":50447,"journal":{"name":"Finance and Stochastics","volume":"68 1","pages":"79 - 98"},"PeriodicalIF":1.1000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A contagion process with self-exciting jumps in credit risk applications\",\"authors\":\"P. Pasricha, Dharmaraja Selvamuthu, Selvaraju Natarajan\",\"doi\":\"10.1080/17442508.2022.2041641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modeling of the probability of joint default or total number of defaults among the firms is one of the crucial problems to mitigate the credit risk since the default correlations significantly affect the portfolio loss distribution and hence play a significant role in allocating capital for solvency purposes. In this article, we derive a closed-form expression for the default probability of a single firm and probability of the total number of defaults by time $t$ in a homogeneous portfolio. We use a contagion process to model the arrival of credit events causing the default and develop a framework that allows firms to have resistance against default unlike the standard intensity-based models. We assume the point process driving the credit events is composed of a systematic and an idiosyncratic component, whose intensities are independently specified by a mean-reverting affine jump-diffusion process with self-exciting jumps. The proposed framework is competent of capturing the feedback effect. We further demonstrate how the proposed framework can be used to price synthetic collateralized debt obligation (CDO). Finally, we present the sensitivity analysis to demonstrate the effect of different parameters governing the contagion effect on the spread of tranches and the expected loss of the CDO.\",\"PeriodicalId\":50447,\"journal\":{\"name\":\"Finance and Stochastics\",\"volume\":\"68 1\",\"pages\":\"79 - 98\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finance and Stochastics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2022.2041641\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance and Stochastics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/17442508.2022.2041641","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

企业间共同违约概率或违约总数的建模是降低信用风险的关键问题之一,因为违约相关性会显著影响投资组合损失分布,因此在为偿付能力目的配置资本方面发挥重要作用。在本文中,我们导出了齐次投资组合中单个企业的违约概率和违约总数随时间$t$的概率的封闭表达式。我们使用传染过程来模拟导致违约的信用事件的到来,并开发了一个框架,该框架允许公司对违约具有抵抗力,而不像标准的基于强度的模型。我们假设驱动信用事件的点过程由系统分量和特殊分量组成,其强度由具有自激跳变的均值回归仿射跳变扩散过程独立指定。所提出的框架能够捕获反馈效应。我们进一步论证了所提出的框架如何用于合成债务抵押债券(CDO)的定价。最后,我们进行了敏感性分析,以证明控制传染效应的不同参数对CDO的分段蔓延和预期损失的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A contagion process with self-exciting jumps in credit risk applications
The modeling of the probability of joint default or total number of defaults among the firms is one of the crucial problems to mitigate the credit risk since the default correlations significantly affect the portfolio loss distribution and hence play a significant role in allocating capital for solvency purposes. In this article, we derive a closed-form expression for the default probability of a single firm and probability of the total number of defaults by time $t$ in a homogeneous portfolio. We use a contagion process to model the arrival of credit events causing the default and develop a framework that allows firms to have resistance against default unlike the standard intensity-based models. We assume the point process driving the credit events is composed of a systematic and an idiosyncratic component, whose intensities are independently specified by a mean-reverting affine jump-diffusion process with self-exciting jumps. The proposed framework is competent of capturing the feedback effect. We further demonstrate how the proposed framework can be used to price synthetic collateralized debt obligation (CDO). Finally, we present the sensitivity analysis to demonstrate the effect of different parameters governing the contagion effect on the spread of tranches and the expected loss of the CDO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Finance and Stochastics
Finance and Stochastics 管理科学-数学跨学科应用
CiteScore
2.90
自引率
5.90%
发文量
20
审稿时长
>12 weeks
期刊介绍: The purpose of Finance and Stochastics is to provide a high standard publication forum for research - in all areas of finance based on stochastic methods - on specific topics in mathematics (in particular probability theory, statistics and stochastic analysis) motivated by the analysis of problems in finance. Finance and Stochastics encompasses - but is not limited to - the following fields: - theory and analysis of financial markets - continuous time finance - derivatives research - insurance in relation to finance - portfolio selection - credit and market risks - term structure models - statistical and empirical financial studies based on advanced stochastic methods - numerical and stochastic solution techniques for problems in finance - intertemporal economics, uncertainty and information in relation to finance.
期刊最新文献
On the Guyon–Lekeufack volatility model Stationary covariance regime for affine stochastic covariance models in Hilbert spaces Robustness of Hilbert space-valued stochastic volatility models A Barndorff-Nielsen and Shephard model with leverage in Hilbert space for commodity forward markets Cost-efficient payoffs under model ambiguity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1