可编程一次公共函数的最小对称PAKE和1- of- n not

Ian McQuoid, Mike Rosulek, Lawrence Roy
{"title":"可编程一次公共函数的最小对称PAKE和1- of- n not","authors":"Ian McQuoid, Mike Rosulek, Lawrence Roy","doi":"10.1145/3372297.3417870","DOIUrl":null,"url":null,"abstract":"Symmetric password-authenticated key exchange (sPAKE) can be seen as an extension of traditional key exchange where two parties agree on a shared key if and only if they share a common secret (possibly low-entropy) password. We present the first sPAKE protocol to simultaneously achieve the following properties: only two exponentiations per party, the same as plain unauthenticated Diffie-Hellman key agreement (and likely optimal); optimal round complexity: a single flow (one message from each party that can be sent in parallel) to achieve implicit authentication, or two flows to achieve explicit mutual authentication; security in the random oracle model, rather than ideal cipher or generic group model; UC security, rather than game-based. Our protocol is a generalization of the seminal EKE protocol of Bellovin & Merritt (S&P 1992). We also present a UC-secure 1-out-of-N oblivious transfer (OT) protocol, for random payloads. Its communication complexity is independent of N, meaning that N can even be exponential in the security parameter. Such a protocol can also be considered a kind of oblivious PRF (OPRF). Our protocol improves over the leading UC-secure 1-out-of-N OT construction of Masny & Rindal (CCS 2019) for all N>2, and has essentially the same cost for N=2. The new technique underlying these results is a primitive we call programmable-once public function (POPF). Intuitively, a POPF is a function whose output can be programmed by one party on exactly one point. All other outputs of the function are outside of any party's control, in a provable sense.","PeriodicalId":20481,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Minimal Symmetric PAKE and 1-out-of-N OT from Programmable-Once Public Functions\",\"authors\":\"Ian McQuoid, Mike Rosulek, Lawrence Roy\",\"doi\":\"10.1145/3372297.3417870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetric password-authenticated key exchange (sPAKE) can be seen as an extension of traditional key exchange where two parties agree on a shared key if and only if they share a common secret (possibly low-entropy) password. We present the first sPAKE protocol to simultaneously achieve the following properties: only two exponentiations per party, the same as plain unauthenticated Diffie-Hellman key agreement (and likely optimal); optimal round complexity: a single flow (one message from each party that can be sent in parallel) to achieve implicit authentication, or two flows to achieve explicit mutual authentication; security in the random oracle model, rather than ideal cipher or generic group model; UC security, rather than game-based. Our protocol is a generalization of the seminal EKE protocol of Bellovin & Merritt (S&P 1992). We also present a UC-secure 1-out-of-N oblivious transfer (OT) protocol, for random payloads. Its communication complexity is independent of N, meaning that N can even be exponential in the security parameter. Such a protocol can also be considered a kind of oblivious PRF (OPRF). Our protocol improves over the leading UC-secure 1-out-of-N OT construction of Masny & Rindal (CCS 2019) for all N>2, and has essentially the same cost for N=2. The new technique underlying these results is a primitive we call programmable-once public function (POPF). Intuitively, a POPF is a function whose output can be programmed by one party on exactly one point. All other outputs of the function are outside of any party's control, in a provable sense.\",\"PeriodicalId\":20481,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372297.3417870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372297.3417870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

对称密码认证密钥交换(spoke)可以看作是传统密钥交换的扩展,当且仅当双方共享一个公共秘密(可能是低熵)密码时,双方就共享密钥达成一致。我们提出了第一个同时实现以下属性的spek协议:每一方只有两次幂,与普通的未经身份验证的Diffie-Hellman密钥协议相同(并且可能是最优的);最优轮复杂度:单个流(每一方可以并行发送一条消息)实现隐式身份验证,或者两个流实现显式相互身份验证;安全性在随机oracle模型,而不是理想的密码或一般组模型;UC安全,而不是基于游戏。我们的协议是对Bellovin & Merritt(标准普尔1992)开创性EKE协议的概括。我们还提出了一个uc安全的1- of- n无关传输(OT)协议,用于随机有效负载。它的通信复杂度与N无关,这意味着N甚至可以是安全参数的指数。这种协议也可以看作是一种无关PRF (OPRF)。对于所有N>2的情况,我们的协议改进了Masny & Rindal (CCS 2019)领先的uc -安全1- of-N OT结构,并且N=2的成本基本相同。这些结果背后的新技术是一个我们称之为可编程一次的公共函数(POPF)的原语。直观地说,POPF是一个函数,它的输出可以由一方在一个点上编程。在可证明的意义上,该函数的所有其他输出都不受任何一方的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimal Symmetric PAKE and 1-out-of-N OT from Programmable-Once Public Functions
Symmetric password-authenticated key exchange (sPAKE) can be seen as an extension of traditional key exchange where two parties agree on a shared key if and only if they share a common secret (possibly low-entropy) password. We present the first sPAKE protocol to simultaneously achieve the following properties: only two exponentiations per party, the same as plain unauthenticated Diffie-Hellman key agreement (and likely optimal); optimal round complexity: a single flow (one message from each party that can be sent in parallel) to achieve implicit authentication, or two flows to achieve explicit mutual authentication; security in the random oracle model, rather than ideal cipher or generic group model; UC security, rather than game-based. Our protocol is a generalization of the seminal EKE protocol of Bellovin & Merritt (S&P 1992). We also present a UC-secure 1-out-of-N oblivious transfer (OT) protocol, for random payloads. Its communication complexity is independent of N, meaning that N can even be exponential in the security parameter. Such a protocol can also be considered a kind of oblivious PRF (OPRF). Our protocol improves over the leading UC-secure 1-out-of-N OT construction of Masny & Rindal (CCS 2019) for all N>2, and has essentially the same cost for N=2. The new technique underlying these results is a primitive we call programmable-once public function (POPF). Intuitively, a POPF is a function whose output can be programmed by one party on exactly one point. All other outputs of the function are outside of any party's control, in a provable sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Session 1D: Applied Cryptography and Cryptanalysis HACLxN: Verified Generic SIMD Crypto (for all your favourite platforms) Pointproofs: Aggregating Proofs for Multiple Vector Commitments Session details: Session 4D: Distributed Protocols A Performant, Misuse-Resistant API for Primality Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1