{"title":"可编程一次公共函数的最小对称PAKE和1- of- n not","authors":"Ian McQuoid, Mike Rosulek, Lawrence Roy","doi":"10.1145/3372297.3417870","DOIUrl":null,"url":null,"abstract":"Symmetric password-authenticated key exchange (sPAKE) can be seen as an extension of traditional key exchange where two parties agree on a shared key if and only if they share a common secret (possibly low-entropy) password. We present the first sPAKE protocol to simultaneously achieve the following properties: only two exponentiations per party, the same as plain unauthenticated Diffie-Hellman key agreement (and likely optimal); optimal round complexity: a single flow (one message from each party that can be sent in parallel) to achieve implicit authentication, or two flows to achieve explicit mutual authentication; security in the random oracle model, rather than ideal cipher or generic group model; UC security, rather than game-based. Our protocol is a generalization of the seminal EKE protocol of Bellovin & Merritt (S&P 1992). We also present a UC-secure 1-out-of-N oblivious transfer (OT) protocol, for random payloads. Its communication complexity is independent of N, meaning that N can even be exponential in the security parameter. Such a protocol can also be considered a kind of oblivious PRF (OPRF). Our protocol improves over the leading UC-secure 1-out-of-N OT construction of Masny & Rindal (CCS 2019) for all N>2, and has essentially the same cost for N=2. The new technique underlying these results is a primitive we call programmable-once public function (POPF). Intuitively, a POPF is a function whose output can be programmed by one party on exactly one point. All other outputs of the function are outside of any party's control, in a provable sense.","PeriodicalId":20481,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Minimal Symmetric PAKE and 1-out-of-N OT from Programmable-Once Public Functions\",\"authors\":\"Ian McQuoid, Mike Rosulek, Lawrence Roy\",\"doi\":\"10.1145/3372297.3417870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetric password-authenticated key exchange (sPAKE) can be seen as an extension of traditional key exchange where two parties agree on a shared key if and only if they share a common secret (possibly low-entropy) password. We present the first sPAKE protocol to simultaneously achieve the following properties: only two exponentiations per party, the same as plain unauthenticated Diffie-Hellman key agreement (and likely optimal); optimal round complexity: a single flow (one message from each party that can be sent in parallel) to achieve implicit authentication, or two flows to achieve explicit mutual authentication; security in the random oracle model, rather than ideal cipher or generic group model; UC security, rather than game-based. Our protocol is a generalization of the seminal EKE protocol of Bellovin & Merritt (S&P 1992). We also present a UC-secure 1-out-of-N oblivious transfer (OT) protocol, for random payloads. Its communication complexity is independent of N, meaning that N can even be exponential in the security parameter. Such a protocol can also be considered a kind of oblivious PRF (OPRF). Our protocol improves over the leading UC-secure 1-out-of-N OT construction of Masny & Rindal (CCS 2019) for all N>2, and has essentially the same cost for N=2. The new technique underlying these results is a primitive we call programmable-once public function (POPF). Intuitively, a POPF is a function whose output can be programmed by one party on exactly one point. All other outputs of the function are outside of any party's control, in a provable sense.\",\"PeriodicalId\":20481,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372297.3417870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372297.3417870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimal Symmetric PAKE and 1-out-of-N OT from Programmable-Once Public Functions
Symmetric password-authenticated key exchange (sPAKE) can be seen as an extension of traditional key exchange where two parties agree on a shared key if and only if they share a common secret (possibly low-entropy) password. We present the first sPAKE protocol to simultaneously achieve the following properties: only two exponentiations per party, the same as plain unauthenticated Diffie-Hellman key agreement (and likely optimal); optimal round complexity: a single flow (one message from each party that can be sent in parallel) to achieve implicit authentication, or two flows to achieve explicit mutual authentication; security in the random oracle model, rather than ideal cipher or generic group model; UC security, rather than game-based. Our protocol is a generalization of the seminal EKE protocol of Bellovin & Merritt (S&P 1992). We also present a UC-secure 1-out-of-N oblivious transfer (OT) protocol, for random payloads. Its communication complexity is independent of N, meaning that N can even be exponential in the security parameter. Such a protocol can also be considered a kind of oblivious PRF (OPRF). Our protocol improves over the leading UC-secure 1-out-of-N OT construction of Masny & Rindal (CCS 2019) for all N>2, and has essentially the same cost for N=2. The new technique underlying these results is a primitive we call programmable-once public function (POPF). Intuitively, a POPF is a function whose output can be programmed by one party on exactly one point. All other outputs of the function are outside of any party's control, in a provable sense.