{"title":"基于深度学习的图像盲几何畸变校正","authors":"Xiaoyu Li, Bo Zhang, P. Sander, Jing Liao","doi":"10.1109/CVPR.2019.00499","DOIUrl":null,"url":null,"abstract":"We propose the first general framework to automatically correct different types of geometric distortion in a single input image. Our proposed method employs convolutional neural networks (CNNs) trained by using a large synthetic distortion dataset to predict the displacement field between distorted images and corrected images. A model fitting method uses the CNN output to estimate the distortion parameters, achieving a more accurate prediction. The final corrected image is generated based on the predicted flow using an efficient, high-quality resampling method. Experimental results demonstrate that our algorithm outperforms traditional correction methods, and allows for interesting applications such as distortion transfer, distortion exaggeration, and co-occurring distortion correction.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"24 1","pages":"4850-4859"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Blind Geometric Distortion Correction on Images Through Deep Learning\",\"authors\":\"Xiaoyu Li, Bo Zhang, P. Sander, Jing Liao\",\"doi\":\"10.1109/CVPR.2019.00499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the first general framework to automatically correct different types of geometric distortion in a single input image. Our proposed method employs convolutional neural networks (CNNs) trained by using a large synthetic distortion dataset to predict the displacement field between distorted images and corrected images. A model fitting method uses the CNN output to estimate the distortion parameters, achieving a more accurate prediction. The final corrected image is generated based on the predicted flow using an efficient, high-quality resampling method. Experimental results demonstrate that our algorithm outperforms traditional correction methods, and allows for interesting applications such as distortion transfer, distortion exaggeration, and co-occurring distortion correction.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"24 1\",\"pages\":\"4850-4859\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blind Geometric Distortion Correction on Images Through Deep Learning
We propose the first general framework to automatically correct different types of geometric distortion in a single input image. Our proposed method employs convolutional neural networks (CNNs) trained by using a large synthetic distortion dataset to predict the displacement field between distorted images and corrected images. A model fitting method uses the CNN output to estimate the distortion parameters, achieving a more accurate prediction. The final corrected image is generated based on the predicted flow using an efficient, high-quality resampling method. Experimental results demonstrate that our algorithm outperforms traditional correction methods, and allows for interesting applications such as distortion transfer, distortion exaggeration, and co-occurring distortion correction.