A. Varvarin, S. Levytska, A. Mylin, O. Zinchenko, V. Brei
{"title":"含cuo催化剂上乙二醇甲醇溶液气相氧化制乙醇酸甲酯的研究","authors":"A. Varvarin, S. Levytska, A. Mylin, O. Zinchenko, V. Brei","doi":"10.15407/kataliz2022.33.059","DOIUrl":null,"url":null,"abstract":"The gas-phase oxidation of ethylene glycol and methanol mixture into methyl glycolate С2H6O2+CH3OH+O2 = C3H6O3+2H2О over synthesized copper-containing catalysts was studied. Methyl glycolate can be considered as raw material for obtaining biodegradable polyglycolide. The CuO-containing samples were synthesized by impregnation of granular oxide-supports (γ-Al2O3, SiO2 and MgO-ZrO2) with the calculated amount of aqueous solution of Cu(NO3)2·3H2O followed by heat treatment at 400 °C. In such way the supported CuO-MexOy /Al2O3 (Me = Mg, Ti, Cr, Co, Zn, Zr, Ag) samples have been prepared. Catalytic experiments were performed in a stainless-steel flow reactor with a fixed bed of catalyst at 200-270 °C and atmospheric pressure. Oxygen of air was used as an oxidant. The reaction products were analyzed using 13C NMR spectroscopy and gas chromatography. It was found that СuO/Al2O3 catalyst provides ~ 100% ethylene glycol conversion with 56% selectivity towards methyl glycolate at 220 °С. The main by-products are methoxymethanol, 1,1-dimethoxymethane, methyl methoxyacetate, and methyl formate. Use of silica as catalyst support leads to a significant decrease of the ethylene glycol conversion to 57 % for CuO/SiO2, but methyl glycolate selectivity does not change significantly. Promotion of СuO/Al2O3 with MgO increases methyl glycolate yield to 64%. According to the scheme of ethylene glycol sequential oxidation the increase in selectivity for methyl glycolate over CuO-MgO/Al2O3 catalyst is caused by the basic sites that promote intramolecular Cannizzaro rearrangement of the intermediate reaction product – glyoxal hemiacetal to methyl glycolate. It’s found that mixed CuO-CrO3 oxide supported by γ-Al2O3 provides 80 % methyl glycolate selectivity with 95-100% ethylene glycol conversion at 200-210 °C.","PeriodicalId":9649,"journal":{"name":"Catalysis and Petrochemistry","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vapor-phase oxidation of ethylene glycol methanolic solution into methyl glycolate over CuO-containing catalysts\",\"authors\":\"A. Varvarin, S. Levytska, A. Mylin, O. Zinchenko, V. Brei\",\"doi\":\"10.15407/kataliz2022.33.059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gas-phase oxidation of ethylene glycol and methanol mixture into methyl glycolate С2H6O2+CH3OH+O2 = C3H6O3+2H2О over synthesized copper-containing catalysts was studied. Methyl glycolate can be considered as raw material for obtaining biodegradable polyglycolide. The CuO-containing samples were synthesized by impregnation of granular oxide-supports (γ-Al2O3, SiO2 and MgO-ZrO2) with the calculated amount of aqueous solution of Cu(NO3)2·3H2O followed by heat treatment at 400 °C. In such way the supported CuO-MexOy /Al2O3 (Me = Mg, Ti, Cr, Co, Zn, Zr, Ag) samples have been prepared. Catalytic experiments were performed in a stainless-steel flow reactor with a fixed bed of catalyst at 200-270 °C and atmospheric pressure. Oxygen of air was used as an oxidant. The reaction products were analyzed using 13C NMR spectroscopy and gas chromatography. It was found that СuO/Al2O3 catalyst provides ~ 100% ethylene glycol conversion with 56% selectivity towards methyl glycolate at 220 °С. The main by-products are methoxymethanol, 1,1-dimethoxymethane, methyl methoxyacetate, and methyl formate. Use of silica as catalyst support leads to a significant decrease of the ethylene glycol conversion to 57 % for CuO/SiO2, but methyl glycolate selectivity does not change significantly. Promotion of СuO/Al2O3 with MgO increases methyl glycolate yield to 64%. According to the scheme of ethylene glycol sequential oxidation the increase in selectivity for methyl glycolate over CuO-MgO/Al2O3 catalyst is caused by the basic sites that promote intramolecular Cannizzaro rearrangement of the intermediate reaction product – glyoxal hemiacetal to methyl glycolate. It’s found that mixed CuO-CrO3 oxide supported by γ-Al2O3 provides 80 % methyl glycolate selectivity with 95-100% ethylene glycol conversion at 200-210 °C.\",\"PeriodicalId\":9649,\"journal\":{\"name\":\"Catalysis and Petrochemistry\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis and Petrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/kataliz2022.33.059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis and Petrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/kataliz2022.33.059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vapor-phase oxidation of ethylene glycol methanolic solution into methyl glycolate over CuO-containing catalysts
The gas-phase oxidation of ethylene glycol and methanol mixture into methyl glycolate С2H6O2+CH3OH+O2 = C3H6O3+2H2О over synthesized copper-containing catalysts was studied. Methyl glycolate can be considered as raw material for obtaining biodegradable polyglycolide. The CuO-containing samples were synthesized by impregnation of granular oxide-supports (γ-Al2O3, SiO2 and MgO-ZrO2) with the calculated amount of aqueous solution of Cu(NO3)2·3H2O followed by heat treatment at 400 °C. In such way the supported CuO-MexOy /Al2O3 (Me = Mg, Ti, Cr, Co, Zn, Zr, Ag) samples have been prepared. Catalytic experiments were performed in a stainless-steel flow reactor with a fixed bed of catalyst at 200-270 °C and atmospheric pressure. Oxygen of air was used as an oxidant. The reaction products were analyzed using 13C NMR spectroscopy and gas chromatography. It was found that СuO/Al2O3 catalyst provides ~ 100% ethylene glycol conversion with 56% selectivity towards methyl glycolate at 220 °С. The main by-products are methoxymethanol, 1,1-dimethoxymethane, methyl methoxyacetate, and methyl formate. Use of silica as catalyst support leads to a significant decrease of the ethylene glycol conversion to 57 % for CuO/SiO2, but methyl glycolate selectivity does not change significantly. Promotion of СuO/Al2O3 with MgO increases methyl glycolate yield to 64%. According to the scheme of ethylene glycol sequential oxidation the increase in selectivity for methyl glycolate over CuO-MgO/Al2O3 catalyst is caused by the basic sites that promote intramolecular Cannizzaro rearrangement of the intermediate reaction product – glyoxal hemiacetal to methyl glycolate. It’s found that mixed CuO-CrO3 oxide supported by γ-Al2O3 provides 80 % methyl glycolate selectivity with 95-100% ethylene glycol conversion at 200-210 °C.