用于能量转换的二氧化钛改性:染料敏化太阳能电池的经验

Hammad Cheema, K. Joya
{"title":"用于能量转换的二氧化钛改性:染料敏化太阳能电池的经验","authors":"Hammad Cheema, K. Joya","doi":"10.5772/INTECHOPEN.74565","DOIUrl":null,"url":null,"abstract":"During the last two and half decade modifying anatase TiO 2 has appreciably enhanced our understanding and application of this semiconducting, non-toxic material. In the domain of DSCs, the main focus has been to achieve band adjustment to facilitate electron injection from anchored dyes, and high electronic mobility for photo-generated electron collection. In retrospection, there is a dire need to assimilate and summarize the findings of these studies to further catalyze the research, better understanding and comparison of the structure – property relationships in modifying TiO 2 efficiently for crucial photo- catalytic, electrochemical and nanostructured applications. This chapter aims at categoriz-ing the typical approaches used to modify TiO 2 in the domain of DSCs such as through TiO 2 paste additives, TiO 2 doping, metal oxides inclusion, dye solution co-adsorbing additives, post staining surface treatment additives and electrolyte additives. A summary of the consequences of these modifications on electron injection, charge extraction, elec- tronic mobility, conduction band shift and surface states has been presented. This chapter is expected to hugely benefit the researchers employing TiO 2 in energy, catalysis and battery applications.","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Titanium Dioxide Modifications for Energy Conversion: Learnings from Dye-Sensitized Solar Cells\",\"authors\":\"Hammad Cheema, K. Joya\",\"doi\":\"10.5772/INTECHOPEN.74565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last two and half decade modifying anatase TiO 2 has appreciably enhanced our understanding and application of this semiconducting, non-toxic material. In the domain of DSCs, the main focus has been to achieve band adjustment to facilitate electron injection from anchored dyes, and high electronic mobility for photo-generated electron collection. In retrospection, there is a dire need to assimilate and summarize the findings of these studies to further catalyze the research, better understanding and comparison of the structure – property relationships in modifying TiO 2 efficiently for crucial photo- catalytic, electrochemical and nanostructured applications. This chapter aims at categoriz-ing the typical approaches used to modify TiO 2 in the domain of DSCs such as through TiO 2 paste additives, TiO 2 doping, metal oxides inclusion, dye solution co-adsorbing additives, post staining surface treatment additives and electrolyte additives. A summary of the consequences of these modifications on electron injection, charge extraction, elec- tronic mobility, conduction band shift and surface states has been presented. This chapter is expected to hugely benefit the researchers employing TiO 2 in energy, catalysis and battery applications.\",\"PeriodicalId\":23104,\"journal\":{\"name\":\"Titanium Dioxide - Material for a Sustainable Environment\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Titanium Dioxide - Material for a Sustainable Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.74565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Titanium Dioxide - Material for a Sustainable Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.74565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在过去的25年里,改性锐钛矿二氧化钛极大地提高了我们对这种半导体、无毒材料的理解和应用。在dsc领域,主要焦点是实现波段调整以促进锚定染料的电子注入,以及光生成电子收集的高电子迁移率。回顾过去,迫切需要吸收和总结这些研究成果,以进一步催化研究,更好地理解和比较有效修饰二氧化钛的结构-性能关系,以实现关键的光催化,电化学和纳米结构应用。本章旨在对dsc领域中用于修饰tio2的典型方法进行分类,例如通过tio2浆料添加剂、tio2掺杂、金属氧化物包合、染料溶液共吸附添加剂、染色后表面处理添加剂和电解质添加剂。总结了这些修饰对电子注入、电荷萃取、电子迁移率、导电带位移和表面态的影响。本章预计将极大地有利于研究人员在能源、催化和电池应用中使用二氧化钛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Titanium Dioxide Modifications for Energy Conversion: Learnings from Dye-Sensitized Solar Cells
During the last two and half decade modifying anatase TiO 2 has appreciably enhanced our understanding and application of this semiconducting, non-toxic material. In the domain of DSCs, the main focus has been to achieve band adjustment to facilitate electron injection from anchored dyes, and high electronic mobility for photo-generated electron collection. In retrospection, there is a dire need to assimilate and summarize the findings of these studies to further catalyze the research, better understanding and comparison of the structure – property relationships in modifying TiO 2 efficiently for crucial photo- catalytic, electrochemical and nanostructured applications. This chapter aims at categoriz-ing the typical approaches used to modify TiO 2 in the domain of DSCs such as through TiO 2 paste additives, TiO 2 doping, metal oxides inclusion, dye solution co-adsorbing additives, post staining surface treatment additives and electrolyte additives. A summary of the consequences of these modifications on electron injection, charge extraction, elec- tronic mobility, conduction band shift and surface states has been presented. This chapter is expected to hugely benefit the researchers employing TiO 2 in energy, catalysis and battery applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Advances in TiO2 Nanotube-Based Materials for Photocatalytic Applications Designed by Anodic Oxidation Hierarchical Nanostructures of Titanium Dioxide: Synthesis and Applications Preparation of Blue TiO2 for Visible-Light-Driven Photocatalysis Novel Two-Dimensional Nanomaterial: High Aspect Ratio Titania Nanoflakes Synthetic Methods for Titanium Dioxide Nanoparticles: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1