Martin Kutrib, Julien Provillard, György Vaszil, Matthias Wendlandt
{"title":"具有次线性空间的确定性单向图灵机","authors":"Martin Kutrib, Julien Provillard, György Vaszil, Matthias Wendlandt","doi":"10.3233/FI-2015-1147","DOIUrl":null,"url":null,"abstract":"Deterministic one-way Turing machines with sublinear space bounds are systematically studied. We distinguish among the notions of strong, weak, and restricted space bounds. The latter is motivated by the study of P automata. The space available on the work tape depends on the number of input symbols read so far, instead of the entire input. The class of functions space constructible by such machines is investigated, and it is shown that every function f that is space constructible by a deterministic two-way Turing machine, is space constructible by a strongly f space-bounded deterministic one-way Turing machine as well. We prove that the restricted mode coincides with the strong mode for space constructible functions. The known infinite, dense, and strict hierarchy of strong space complexity classes is derived also for the weak mode by Kolmogorov complexity arguments. Finally, closure properties under AFL operations, Boolean operations and reversal are shown.","PeriodicalId":56310,"journal":{"name":"Fundamenta Informaticae","volume":"2a 1","pages":"195-208"},"PeriodicalIF":0.4000,"publicationDate":"2013-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Deterministic One-Way Turing Machines with Sublinear Space\",\"authors\":\"Martin Kutrib, Julien Provillard, György Vaszil, Matthias Wendlandt\",\"doi\":\"10.3233/FI-2015-1147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deterministic one-way Turing machines with sublinear space bounds are systematically studied. We distinguish among the notions of strong, weak, and restricted space bounds. The latter is motivated by the study of P automata. The space available on the work tape depends on the number of input symbols read so far, instead of the entire input. The class of functions space constructible by such machines is investigated, and it is shown that every function f that is space constructible by a deterministic two-way Turing machine, is space constructible by a strongly f space-bounded deterministic one-way Turing machine as well. We prove that the restricted mode coincides with the strong mode for space constructible functions. The known infinite, dense, and strict hierarchy of strong space complexity classes is derived also for the weak mode by Kolmogorov complexity arguments. Finally, closure properties under AFL operations, Boolean operations and reversal are shown.\",\"PeriodicalId\":56310,\"journal\":{\"name\":\"Fundamenta Informaticae\",\"volume\":\"2a 1\",\"pages\":\"195-208\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2013-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Informaticae\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/FI-2015-1147\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Informaticae","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/FI-2015-1147","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Deterministic One-Way Turing Machines with Sublinear Space
Deterministic one-way Turing machines with sublinear space bounds are systematically studied. We distinguish among the notions of strong, weak, and restricted space bounds. The latter is motivated by the study of P automata. The space available on the work tape depends on the number of input symbols read so far, instead of the entire input. The class of functions space constructible by such machines is investigated, and it is shown that every function f that is space constructible by a deterministic two-way Turing machine, is space constructible by a strongly f space-bounded deterministic one-way Turing machine as well. We prove that the restricted mode coincides with the strong mode for space constructible functions. The known infinite, dense, and strict hierarchy of strong space complexity classes is derived also for the weak mode by Kolmogorov complexity arguments. Finally, closure properties under AFL operations, Boolean operations and reversal are shown.
期刊介绍:
Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing:
solutions by mathematical methods of problems emerging in computer science
solutions of mathematical problems inspired by computer science.
Topics of interest include (but are not restricted to):
theory of computing,
complexity theory,
algorithms and data structures,
computational aspects of combinatorics and graph theory,
programming language theory,
theoretical aspects of programming languages,
computer-aided verification,
computer science logic,
database theory,
logic programming,
automated deduction,
formal languages and automata theory,
concurrency and distributed computing,
cryptography and security,
theoretical issues in artificial intelligence,
machine learning,
pattern recognition,
algorithmic game theory,
bioinformatics and computational biology,
quantum computing,
probabilistic methods,
algebraic and categorical methods.