A. Orozco Estrada, R. C. Cruz Gómez, A. Cros, P. Le Gal
{"title":"透镜状反气旋在线性分层旋转流体中的聚合","authors":"A. Orozco Estrada, R. C. Cruz Gómez, A. Cros, P. Le Gal","doi":"10.1080/03091929.2020.1734199","DOIUrl":null,"url":null,"abstract":"This study is devoted to laboratory experiments on the coalescence of two lenticular anticyclones in a linearly stratified rotating fluid. These anticyclones are generated by injecting small volumes of fluid at the centre of a rotating tank where a linearly stratified layer was previously prepared with salt. The characteristics of the interaction between the vortices are studied by visualisation and Particle Image Velocimetry (PIV) as a function of the initial separation distance between the vortices, the Coriolis parameter of the rotating table and the Brünt-Väisälä frequency of the density stratification. Our results show that the merging critical distance depends drastically on the Rossby radius of deformation of the vortices and are in complete agreement with previous numerical modelling of vortex coalescence. We have also observed that mergers involve three-dimensional processes as the vortices intertwine together possibly because of the presence of an elliptic instability that tilts the vortex cores. They are also accompanied by the emission of vorticity filaments and internal gravity waves radiation although we cannot prove that in our experiments these waves are solely due to the merging process.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"23 1","pages":"504 - 523"},"PeriodicalIF":1.1000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Coalescence of lenticular anticyclones in a linearly stratified rotating fluid\",\"authors\":\"A. Orozco Estrada, R. C. Cruz Gómez, A. Cros, P. Le Gal\",\"doi\":\"10.1080/03091929.2020.1734199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is devoted to laboratory experiments on the coalescence of two lenticular anticyclones in a linearly stratified rotating fluid. These anticyclones are generated by injecting small volumes of fluid at the centre of a rotating tank where a linearly stratified layer was previously prepared with salt. The characteristics of the interaction between the vortices are studied by visualisation and Particle Image Velocimetry (PIV) as a function of the initial separation distance between the vortices, the Coriolis parameter of the rotating table and the Brünt-Väisälä frequency of the density stratification. Our results show that the merging critical distance depends drastically on the Rossby radius of deformation of the vortices and are in complete agreement with previous numerical modelling of vortex coalescence. We have also observed that mergers involve three-dimensional processes as the vortices intertwine together possibly because of the presence of an elliptic instability that tilts the vortex cores. They are also accompanied by the emission of vorticity filaments and internal gravity waves radiation although we cannot prove that in our experiments these waves are solely due to the merging process.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"23 1\",\"pages\":\"504 - 523\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2020.1734199\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1734199","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Coalescence of lenticular anticyclones in a linearly stratified rotating fluid
This study is devoted to laboratory experiments on the coalescence of two lenticular anticyclones in a linearly stratified rotating fluid. These anticyclones are generated by injecting small volumes of fluid at the centre of a rotating tank where a linearly stratified layer was previously prepared with salt. The characteristics of the interaction between the vortices are studied by visualisation and Particle Image Velocimetry (PIV) as a function of the initial separation distance between the vortices, the Coriolis parameter of the rotating table and the Brünt-Väisälä frequency of the density stratification. Our results show that the merging critical distance depends drastically on the Rossby radius of deformation of the vortices and are in complete agreement with previous numerical modelling of vortex coalescence. We have also observed that mergers involve three-dimensional processes as the vortices intertwine together possibly because of the presence of an elliptic instability that tilts the vortex cores. They are also accompanied by the emission of vorticity filaments and internal gravity waves radiation although we cannot prove that in our experiments these waves are solely due to the merging process.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.