分布式流的轻量级监控

A. Lazerson, D. Keren, A. Schuster
{"title":"分布式流的轻量级监控","authors":"A. Lazerson, D. Keren, A. Schuster","doi":"10.1145/3226113","DOIUrl":null,"url":null,"abstract":"As data becomes dynamic, large, and distributed, there is increasing demand for what have become known as distributed stream algorithms. Since continuously collecting the data to a central server and processing it there is infeasible, a common approach is to define local conditions at the distributed nodes, such that—as long as they are maintained—some desirable global condition holds. Previous methods derived local conditions focusing on communication efficiency. While proving very useful for reducing the communication volume, these local conditions often suffer from heavy computational burden at the nodes. The computational complexity of the local conditions affects both the runtime and the energy consumption. These are especially critical for resource-limited devices like smartphones and sensor nodes. Such devices are becoming more ubiquitous due to the recent trend toward smart cities and the Internet of Things. To accommodate for high data rates and limited resources of these devices, it is crucial that the local conditions be quickly and efficiently evaluated. Here we propose a novel approach, designated CB (for Convex/Concave Bounds). CB defines local conditions using suitably chosen convex and concave functions. Lightweight and simple, these local conditions can be rapidly checked on the fly. CB’s superiority over the state-of-the-art is demonstrated in its reduced runtime and power consumption, by up to six orders of magnitude in some cases. As an added bonus, CB also reduced communication overhead in all the tested application scenarios.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"1 1","pages":"1 - 37"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Lightweight Monitoring of Distributed Streams\",\"authors\":\"A. Lazerson, D. Keren, A. Schuster\",\"doi\":\"10.1145/3226113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As data becomes dynamic, large, and distributed, there is increasing demand for what have become known as distributed stream algorithms. Since continuously collecting the data to a central server and processing it there is infeasible, a common approach is to define local conditions at the distributed nodes, such that—as long as they are maintained—some desirable global condition holds. Previous methods derived local conditions focusing on communication efficiency. While proving very useful for reducing the communication volume, these local conditions often suffer from heavy computational burden at the nodes. The computational complexity of the local conditions affects both the runtime and the energy consumption. These are especially critical for resource-limited devices like smartphones and sensor nodes. Such devices are becoming more ubiquitous due to the recent trend toward smart cities and the Internet of Things. To accommodate for high data rates and limited resources of these devices, it is crucial that the local conditions be quickly and efficiently evaluated. Here we propose a novel approach, designated CB (for Convex/Concave Bounds). CB defines local conditions using suitably chosen convex and concave functions. Lightweight and simple, these local conditions can be rapidly checked on the fly. CB’s superiority over the state-of-the-art is demonstrated in its reduced runtime and power consumption, by up to six orders of magnitude in some cases. As an added bonus, CB also reduced communication overhead in all the tested application scenarios.\",\"PeriodicalId\":6983,\"journal\":{\"name\":\"ACM Transactions on Database Systems (TODS)\",\"volume\":\"1 1\",\"pages\":\"1 - 37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Database Systems (TODS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3226113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3226113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着数据变得动态、庞大和分布式,对分布式流算法的需求也在不断增加。由于连续地将数据收集到中央服务器并在那里进行处理是不可实现的,因此一种常见的方法是在分布式节点上定义局部条件,这样——只要它们得到维护——一些理想的全局条件就会保持。以前的方法推导了关注通信效率的局部条件。虽然事实证明这些局部条件对于减少通信量非常有用,但这些局部条件通常在节点上遭受沉重的计算负担。局部条件的计算复杂度既影响运行时间,也影响能耗。这对于智能手机和传感器节点等资源有限的设备尤其重要。由于最近智能城市和物联网的趋势,这些设备变得越来越普遍。为了适应这些设备的高数据速率和有限的资源,快速有效地评估当地条件至关重要。在这里,我们提出了一种新的方法,称为CB(凸/凹边界)。CB使用适当选择的凸函数和凹函数定义局部条件。重量轻,简单,这些局部条件可以在飞行中快速检查。CB的优势体现在其运行时间和功耗的降低上,在某些情况下可降低6个数量级。作为额外的好处,CB还减少了所有测试应用程序场景中的通信开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lightweight Monitoring of Distributed Streams
As data becomes dynamic, large, and distributed, there is increasing demand for what have become known as distributed stream algorithms. Since continuously collecting the data to a central server and processing it there is infeasible, a common approach is to define local conditions at the distributed nodes, such that—as long as they are maintained—some desirable global condition holds. Previous methods derived local conditions focusing on communication efficiency. While proving very useful for reducing the communication volume, these local conditions often suffer from heavy computational burden at the nodes. The computational complexity of the local conditions affects both the runtime and the energy consumption. These are especially critical for resource-limited devices like smartphones and sensor nodes. Such devices are becoming more ubiquitous due to the recent trend toward smart cities and the Internet of Things. To accommodate for high data rates and limited resources of these devices, it is crucial that the local conditions be quickly and efficiently evaluated. Here we propose a novel approach, designated CB (for Convex/Concave Bounds). CB defines local conditions using suitably chosen convex and concave functions. Lightweight and simple, these local conditions can be rapidly checked on the fly. CB’s superiority over the state-of-the-art is demonstrated in its reduced runtime and power consumption, by up to six orders of magnitude in some cases. As an added bonus, CB also reduced communication overhead in all the tested application scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Finding Rank Regret Representatives Answering (Unions of) Conjunctive Queries using Random Access and Random-Order Enumeration Persistent Summaries Influence Maximization Revisited: Efficient Sampling with Bound Tightened The Space-Efficient Core of Vadalog
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1