{"title":"通过最大冗余检测开始检测","authors":"G. V. Dijck, M. Hulle","doi":"10.1109/ICPR.2006.907","DOIUrl":null,"url":null,"abstract":"We propose a criterion, called maximal redundancy’, for onset detection in time series. The concept redundancy is adopted from information theory and indicates how well a signal locally can be explained by an underlying model. It is shown that a local maximum in the redundancy is a good indicator for an onset. It is proven that ‘maximal redundancy’ detection is a statistical asymptotically optimal detector for AR processes. It also accounts for potentially non-Gaussian time series and non- Gaussian innovations in the AR processes. Several applications are shown where the new criterion has been successfully applied.","PeriodicalId":74516,"journal":{"name":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","volume":"18 1","pages":"945-949"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Onset Detection through Maximal Redundancy Detection\",\"authors\":\"G. V. Dijck, M. Hulle\",\"doi\":\"10.1109/ICPR.2006.907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a criterion, called maximal redundancy’, for onset detection in time series. The concept redundancy is adopted from information theory and indicates how well a signal locally can be explained by an underlying model. It is shown that a local maximum in the redundancy is a good indicator for an onset. It is proven that ‘maximal redundancy’ detection is a statistical asymptotically optimal detector for AR processes. It also accounts for potentially non-Gaussian time series and non- Gaussian innovations in the AR processes. Several applications are shown where the new criterion has been successfully applied.\",\"PeriodicalId\":74516,\"journal\":{\"name\":\"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition\",\"volume\":\"18 1\",\"pages\":\"945-949\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一个称为最大冗余度的准则,用于时间序列的起始检测。冗余的概念是从信息论中引入的,它表明了一个信号在多大程度上可以被一个底层模型解释。结果表明,冗余的局部最大值是一个很好的起始指标。证明了“最大冗余”检测是AR过程的统计渐近最优检测器。它还解释了潜在的非高斯时间序列和AR过程中的非高斯创新。展示了几个成功应用新准则的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Onset Detection through Maximal Redundancy Detection
We propose a criterion, called maximal redundancy’, for onset detection in time series. The concept redundancy is adopted from information theory and indicates how well a signal locally can be explained by an underlying model. It is shown that a local maximum in the redundancy is a good indicator for an onset. It is proven that ‘maximal redundancy’ detection is a statistical asymptotically optimal detector for AR processes. It also accounts for potentially non-Gaussian time series and non- Gaussian innovations in the AR processes. Several applications are shown where the new criterion has been successfully applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Complexity of Representations in Deep Learning Extraction of Ruler Markings For Estimating Physical Size of Oral Lesions. TensorMixup Data Augmentation Method for Fully Automatic Brain Tumor Segmentation Classifying Breast Histopathology Images with a Ductal Instance-Oriented Pipeline. Directionally Paired Principal Component Analysis for Bivariate Estimation Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1