{"title":"基于常规和降低共模电压的SVPWM逆变器直流链路电容RMS电流应力的比较评估","authors":"A. A. Khan, N. Zaffar, M. Ikram","doi":"10.1109/COMPEL52896.2023.10221179","DOIUrl":null,"url":null,"abstract":"This work investigates the comparative assessment of DC-link current ripples in perspective of reduced common mode voltage (RCMV) PWM schemes. The anticipated simultaneous reduction of ripple current on DC-link capacitor and common mode voltage compared to traditional PWM approach is seen to exist in certain regions of operation. This may result in reduced thermal stress and consequently in enhanced reliability and operational lifetime. Another increasingly important consideration is for DC microgrids where the inverters are connected directly to the dc-bus and ripple reduction and RCMV for one or more of these inverters is critical for reliable operation. This work utilizes the piece-wise sinusoidal form of DC-link current computing a closed form RMS current expression that is further analyzed for varying load and mod-indices. The RMS DC-link current of conventional space vector PWM has also been analyzed as base case. It would be seen that these modified PWMs mostly put higher ripple stresses on capacitor. However, there are specific regions where one PWM scheme can be employed for reducing DC-link stress.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"71 1","pages":"1-7"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Evaluation of DC-link Capacitor RMS Current Stress for Conventional and Reduced Common Mode Voltage SVPWM based Inverters\",\"authors\":\"A. A. Khan, N. Zaffar, M. Ikram\",\"doi\":\"10.1109/COMPEL52896.2023.10221179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates the comparative assessment of DC-link current ripples in perspective of reduced common mode voltage (RCMV) PWM schemes. The anticipated simultaneous reduction of ripple current on DC-link capacitor and common mode voltage compared to traditional PWM approach is seen to exist in certain regions of operation. This may result in reduced thermal stress and consequently in enhanced reliability and operational lifetime. Another increasingly important consideration is for DC microgrids where the inverters are connected directly to the dc-bus and ripple reduction and RCMV for one or more of these inverters is critical for reliable operation. This work utilizes the piece-wise sinusoidal form of DC-link current computing a closed form RMS current expression that is further analyzed for varying load and mod-indices. The RMS DC-link current of conventional space vector PWM has also been analyzed as base case. It would be seen that these modified PWMs mostly put higher ripple stresses on capacitor. However, there are specific regions where one PWM scheme can be employed for reducing DC-link stress.\",\"PeriodicalId\":55233,\"journal\":{\"name\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"volume\":\"71 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEL52896.2023.10221179\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10221179","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Comparative Evaluation of DC-link Capacitor RMS Current Stress for Conventional and Reduced Common Mode Voltage SVPWM based Inverters
This work investigates the comparative assessment of DC-link current ripples in perspective of reduced common mode voltage (RCMV) PWM schemes. The anticipated simultaneous reduction of ripple current on DC-link capacitor and common mode voltage compared to traditional PWM approach is seen to exist in certain regions of operation. This may result in reduced thermal stress and consequently in enhanced reliability and operational lifetime. Another increasingly important consideration is for DC microgrids where the inverters are connected directly to the dc-bus and ripple reduction and RCMV for one or more of these inverters is critical for reliable operation. This work utilizes the piece-wise sinusoidal form of DC-link current computing a closed form RMS current expression that is further analyzed for varying load and mod-indices. The RMS DC-link current of conventional space vector PWM has also been analyzed as base case. It would be seen that these modified PWMs mostly put higher ripple stresses on capacitor. However, there are specific regions where one PWM scheme can be employed for reducing DC-link stress.
期刊介绍:
COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.