喷雾冷冻干燥技术开发新型复方pmdi的研究(二):体外和体内评价

Quanxin Xi, Zhen Cao, Jianbo Miao, Hao Wang
{"title":"喷雾冷冻干燥技术开发新型复方pmdi的研究(二):体外和体内评价","authors":"Quanxin Xi, Zhen Cao, Jianbo Miao, Hao Wang","doi":"10.1055/s-0042-1758388","DOIUrl":null,"url":null,"abstract":"Abstract The mometasone furoate (MF) and formoterol fumarate dihydrate (FF) inhalable microparticles prepared by different methods, such as micronized active pharmaceutical ingredients (APIs), microparticles of APIs prepared by spray-freeze drying technique (SFD APIs), and phospholipid microparticles of APIs prepared by SFD (SFD Lip-APIs), showed different inhaled drug delivery characteristics. Study on the physicochemical characteristics of those microparticles and the effect of matrix excipients on pharmacokinetic ( PK ) behaviors of inhalable microparticles is helpful for the development of new methods for inhalable microparticles with excellent performance of inhalation characteristics. In this study, the crystal state of the microparticles was investigated by powder X-ray diffraction and differential scanning calorimetry. The density was investigated by a bulk density method. The suspension and dispersion characteristics were determined by observing its state in hydrofluoroalkane (HFA). Meanwhile, the PK behaviors of SFD Lip-APIs in beagle dogs were also investigated by airway administration to evaluate the effect of phospholipids on drug release. The results indicated that the presence of phospholipids prevents the formation of solid bridges bonding to each other during SFD of pure drug solutions. In comparison to the conventional micronized microparticles, inhalable drug–phospholipid microparticles were easily dispersed and suspended in HFA. The embedded drugs were in a crystal state that endowed a better physical stability, and most interestingly, have similar PK behavior to the control (a mixed solution of MF/FF), suggesting that the phospholipids, as matrix excipients, had no effect on absorption. Given above, our designed SFD phospholipid microparticles may represent an efficient carrier for pulmonary delivery of MF and FF for further clinical treatment.","PeriodicalId":19767,"journal":{"name":"Pharmaceutical Fronts","volume":"79 1","pages":"e275 - e283"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Study of Spray-Freeze-Drying Technique for Development of Novel Combination pMDIs, Part II: In Vitro and In Vivo Evaluations\",\"authors\":\"Quanxin Xi, Zhen Cao, Jianbo Miao, Hao Wang\",\"doi\":\"10.1055/s-0042-1758388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The mometasone furoate (MF) and formoterol fumarate dihydrate (FF) inhalable microparticles prepared by different methods, such as micronized active pharmaceutical ingredients (APIs), microparticles of APIs prepared by spray-freeze drying technique (SFD APIs), and phospholipid microparticles of APIs prepared by SFD (SFD Lip-APIs), showed different inhaled drug delivery characteristics. Study on the physicochemical characteristics of those microparticles and the effect of matrix excipients on pharmacokinetic ( PK ) behaviors of inhalable microparticles is helpful for the development of new methods for inhalable microparticles with excellent performance of inhalation characteristics. In this study, the crystal state of the microparticles was investigated by powder X-ray diffraction and differential scanning calorimetry. The density was investigated by a bulk density method. The suspension and dispersion characteristics were determined by observing its state in hydrofluoroalkane (HFA). Meanwhile, the PK behaviors of SFD Lip-APIs in beagle dogs were also investigated by airway administration to evaluate the effect of phospholipids on drug release. The results indicated that the presence of phospholipids prevents the formation of solid bridges bonding to each other during SFD of pure drug solutions. In comparison to the conventional micronized microparticles, inhalable drug–phospholipid microparticles were easily dispersed and suspended in HFA. The embedded drugs were in a crystal state that endowed a better physical stability, and most interestingly, have similar PK behavior to the control (a mixed solution of MF/FF), suggesting that the phospholipids, as matrix excipients, had no effect on absorption. Given above, our designed SFD phospholipid microparticles may represent an efficient carrier for pulmonary delivery of MF and FF for further clinical treatment.\",\"PeriodicalId\":19767,\"journal\":{\"name\":\"Pharmaceutical Fronts\",\"volume\":\"79 1\",\"pages\":\"e275 - e283\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Fronts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0042-1758388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Fronts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1758388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要呋喃酸莫米松(MF)和富马酸福莫特罗二水合物(FF)可吸入微颗粒的制备方法不同,如活性药物成分微颗粒(api)、喷雾冷冻干燥技术制备的原料药微颗粒(SFD APIs)、喷雾冷冻干燥技术制备的原料药磷脂微颗粒(SFD唇形APIs),均表现出不同的吸入给药特性。研究这些微颗粒的物理化学特性以及基质辅料对可吸入微颗粒药代动力学(PK)行为的影响,有助于开发具有优良吸入特性的可吸入微颗粒的新方法。本研究采用粉末x射线衍射和差示扫描量热法研究了微颗粒的晶体状态。用体积密度法测定了其密度。通过观察其在氢氟烷烃(HFA)中的状态,确定了其悬浮和分散特性。同时,通过气道给药研究SFD lip - api在beagle犬体内的PK行为,以评价磷脂对药物释放的影响。结果表明,磷脂的存在阻止了纯药物溶液在SFD过程中形成相互连接的固体桥。与传统的微颗粒相比,可吸入的药物磷脂微颗粒易于分散和悬浮在HFA中。包埋的药物呈晶体状态,具有更好的物理稳定性,最有趣的是,与对照(MF/FF混合溶液)具有相似的PK行为,这表明磷脂作为基质赋形剂对吸收没有影响。综上所述,我们设计的SFD磷脂微粒可能是肺输送MF和FF的有效载体,用于进一步的临床治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Study of Spray-Freeze-Drying Technique for Development of Novel Combination pMDIs, Part II: In Vitro and In Vivo Evaluations
Abstract The mometasone furoate (MF) and formoterol fumarate dihydrate (FF) inhalable microparticles prepared by different methods, such as micronized active pharmaceutical ingredients (APIs), microparticles of APIs prepared by spray-freeze drying technique (SFD APIs), and phospholipid microparticles of APIs prepared by SFD (SFD Lip-APIs), showed different inhaled drug delivery characteristics. Study on the physicochemical characteristics of those microparticles and the effect of matrix excipients on pharmacokinetic ( PK ) behaviors of inhalable microparticles is helpful for the development of new methods for inhalable microparticles with excellent performance of inhalation characteristics. In this study, the crystal state of the microparticles was investigated by powder X-ray diffraction and differential scanning calorimetry. The density was investigated by a bulk density method. The suspension and dispersion characteristics were determined by observing its state in hydrofluoroalkane (HFA). Meanwhile, the PK behaviors of SFD Lip-APIs in beagle dogs were also investigated by airway administration to evaluate the effect of phospholipids on drug release. The results indicated that the presence of phospholipids prevents the formation of solid bridges bonding to each other during SFD of pure drug solutions. In comparison to the conventional micronized microparticles, inhalable drug–phospholipid microparticles were easily dispersed and suspended in HFA. The embedded drugs were in a crystal state that endowed a better physical stability, and most interestingly, have similar PK behavior to the control (a mixed solution of MF/FF), suggesting that the phospholipids, as matrix excipients, had no effect on absorption. Given above, our designed SFD phospholipid microparticles may represent an efficient carrier for pulmonary delivery of MF and FF for further clinical treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
15 weeks
期刊最新文献
Recent Advances in Mitochondrial Pyruvate Carrier Inhibitors Discovery of a Novel Benzimidazole Necroptosis Inhibitor from an In-House Compound Library Research Strategies for Precise Manipulation of Micro/Nanoparticle Drug Delivery Systems Using Microfluidic Technology: A Review Advances in Tumor Targeting Biomimetic Drug Delivery Systems: A Promising Approach for Antitumor Therapy 3D Printing Pharmaceuticals: Current Status and Future Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1