油田缓结垢修复中油田沉积物溶蚀研究

Chao Yan, Wei Wang, Wei Wei
{"title":"油田缓结垢修复中油田沉积物溶蚀研究","authors":"Chao Yan, Wei Wang, Wei Wei","doi":"10.2118/193611-MS","DOIUrl":null,"url":null,"abstract":"\n Formation of scales in near-wellbore reservoir/downhole and production systems can lead to production loss, system integrity and reliability degradation, and fouling of device and equipment. The mitigation and remediation of oilfield depositions can be difficult and costly. Better understanding of the key factors impacting scale dissolution, such as temperature and pH will benefit scale mitigation practices. Most of the research and investigation of silicate dissolution for example are based on low temperature experiences (e.g., <100 °C). Strong acids such as concentrated HCl, HF and aqua regia may not be applicable for field application.\n In this study, field depositions with various scale types such as silicates, carbonate, sulfides are characterized and used for studying effects of pH, temperature and solvent on their dissolution. Experiments with oilfield scale deposit samples including silicates were conducted with high temperature thermal aging cells at temperature range >100 °C and pH from 6 – 8. Dissolution test with field scale samples were also conducted under ambient conditions. Various solvents including xylene, HCl and acetic acid were used in the test.\n To summarize the results, decreasing temperature has limited effect on dissolution of magnesium silicates, but improves dissolution of calcite and anhydrite which coexist with the field sample. Decreasing pH improves the dissolution of magnesium silicate and calcite. Total amount of dissolved silicates can increase significantly due to appropriate pH decrease. Solution pH is increased dramatically due to the formation of hydroxyl ions during the dissolution process. The reaction for dissolution of metal silicate scale is proposed based on observation and results in the study. More fine particles are produced after dissolution and suspended in solution for at least 15 minutes, which makes solid mitigation possible by applying proper agitation. Oilfield deposits can include a variety of components, and appropriate scale sample characterization should be utilized for selection of mitigation/remediation approaches.\n This paper provides novel information of oilfield scale dissolution (including silicate scale) at high temperature by using field applicable treatment approaches. Results lead to better understanding of silicate dissolution at various pHs and temperatures, and required conditions for successful mitigation and remediation of oilfield scale deposits","PeriodicalId":11243,"journal":{"name":"Day 2 Tue, April 09, 2019","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissolution Study of Field Deposits for Oilfield Scale Mitigation and Remediation\",\"authors\":\"Chao Yan, Wei Wang, Wei Wei\",\"doi\":\"10.2118/193611-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Formation of scales in near-wellbore reservoir/downhole and production systems can lead to production loss, system integrity and reliability degradation, and fouling of device and equipment. The mitigation and remediation of oilfield depositions can be difficult and costly. Better understanding of the key factors impacting scale dissolution, such as temperature and pH will benefit scale mitigation practices. Most of the research and investigation of silicate dissolution for example are based on low temperature experiences (e.g., <100 °C). Strong acids such as concentrated HCl, HF and aqua regia may not be applicable for field application.\\n In this study, field depositions with various scale types such as silicates, carbonate, sulfides are characterized and used for studying effects of pH, temperature and solvent on their dissolution. Experiments with oilfield scale deposit samples including silicates were conducted with high temperature thermal aging cells at temperature range >100 °C and pH from 6 – 8. Dissolution test with field scale samples were also conducted under ambient conditions. Various solvents including xylene, HCl and acetic acid were used in the test.\\n To summarize the results, decreasing temperature has limited effect on dissolution of magnesium silicates, but improves dissolution of calcite and anhydrite which coexist with the field sample. Decreasing pH improves the dissolution of magnesium silicate and calcite. Total amount of dissolved silicates can increase significantly due to appropriate pH decrease. Solution pH is increased dramatically due to the formation of hydroxyl ions during the dissolution process. The reaction for dissolution of metal silicate scale is proposed based on observation and results in the study. More fine particles are produced after dissolution and suspended in solution for at least 15 minutes, which makes solid mitigation possible by applying proper agitation. Oilfield deposits can include a variety of components, and appropriate scale sample characterization should be utilized for selection of mitigation/remediation approaches.\\n This paper provides novel information of oilfield scale dissolution (including silicate scale) at high temperature by using field applicable treatment approaches. Results lead to better understanding of silicate dissolution at various pHs and temperatures, and required conditions for successful mitigation and remediation of oilfield scale deposits\",\"PeriodicalId\":11243,\"journal\":{\"name\":\"Day 2 Tue, April 09, 2019\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, April 09, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/193611-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, April 09, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193611-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在近井油藏/井下和生产系统中,结垢会导致生产损失、系统完整性和可靠性下降,以及设备结垢。油田沉积物的缓解和补救可能是困难和昂贵的。更好地了解影响水垢溶解的关键因素,如温度和pH值,将有利于减缓水垢的实施。例如,大多数对硅酸盐溶解的研究和调查都是基于低温经验(例如,100°C和pH从6 - 8)。并在环境条件下进行了现场样品的溶出试验。试验中使用了各种溶剂,包括二甲苯、盐酸和乙酸。综上所述,降低温度对硅酸镁的溶解影响有限,但对与现场样品共存的方解石和硬石膏的溶解有促进作用。降低pH有利于硅酸镁和方解石的溶解。适当降低pH值可显著增加硅酸盐的溶解总量。由于在溶解过程中形成羟基离子,溶液pH值急剧增加。根据观察和研究结果,提出了金属硅酸盐水垢溶解反应。溶解和悬浮在溶液中至少15分钟后产生更多的细颗粒,这使得通过适当的搅拌可以减少固体。油田沉积物可能包含多种成分,在选择缓解/补救方法时应利用适当的尺度样品表征。通过现场适用的处理方法,提供了油田高温下结垢(含硅酸盐结垢)的新信息。研究结果有助于更好地了解不同ph值和温度下的硅酸盐溶解,以及成功缓解和修复油田结垢沉积物所需的条件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dissolution Study of Field Deposits for Oilfield Scale Mitigation and Remediation
Formation of scales in near-wellbore reservoir/downhole and production systems can lead to production loss, system integrity and reliability degradation, and fouling of device and equipment. The mitigation and remediation of oilfield depositions can be difficult and costly. Better understanding of the key factors impacting scale dissolution, such as temperature and pH will benefit scale mitigation practices. Most of the research and investigation of silicate dissolution for example are based on low temperature experiences (e.g., <100 °C). Strong acids such as concentrated HCl, HF and aqua regia may not be applicable for field application. In this study, field depositions with various scale types such as silicates, carbonate, sulfides are characterized and used for studying effects of pH, temperature and solvent on their dissolution. Experiments with oilfield scale deposit samples including silicates were conducted with high temperature thermal aging cells at temperature range >100 °C and pH from 6 – 8. Dissolution test with field scale samples were also conducted under ambient conditions. Various solvents including xylene, HCl and acetic acid were used in the test. To summarize the results, decreasing temperature has limited effect on dissolution of magnesium silicates, but improves dissolution of calcite and anhydrite which coexist with the field sample. Decreasing pH improves the dissolution of magnesium silicate and calcite. Total amount of dissolved silicates can increase significantly due to appropriate pH decrease. Solution pH is increased dramatically due to the formation of hydroxyl ions during the dissolution process. The reaction for dissolution of metal silicate scale is proposed based on observation and results in the study. More fine particles are produced after dissolution and suspended in solution for at least 15 minutes, which makes solid mitigation possible by applying proper agitation. Oilfield deposits can include a variety of components, and appropriate scale sample characterization should be utilized for selection of mitigation/remediation approaches. This paper provides novel information of oilfield scale dissolution (including silicate scale) at high temperature by using field applicable treatment approaches. Results lead to better understanding of silicate dissolution at various pHs and temperatures, and required conditions for successful mitigation and remediation of oilfield scale deposits
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Barium Sulphate Scale Inhibitor for Chalk Solid Loaded Conditions Novel Laser-Hydrothermal Apparatus for Nucleation and Inhibition Study of Scale Minerals at Temperatures up to 250°C Effect of Corrosion–Inhibitor Chemistry on the Viscosity and Corrosion Rate of VES-Based Acids What Can We Learn from Analysis of Field Asphaltenes Deposits? Enhancing Product Development Through Knowledge-Based Field-to-Lab-to-Field Approach Novel Non-Aromatic Non-Ionic Surfactants to Target Deep Carbonate Stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1