Y. Chitour, S'ebastien Fueyo, Guilherme Mazanti, M. Sigalotti
{"title":"线性差分时滞方程近似和精确可控性的Hautus-Yamamoto准则","authors":"Y. Chitour, S'ebastien Fueyo, Guilherme Mazanti, M. Sigalotti","doi":"10.3934/dcds.2023049","DOIUrl":null,"url":null,"abstract":"The paper deals with the controllability of finite-dimensional linear difference delay equations, i.e., dynamics for which the state at a given time $t$ is obtained as a linear combination of the control evaluated at time $t$ and of the state evaluated at finitely many previous instants of time $t-\\Lambda_1,\\dots,t-\\Lambda_N$. Based on the realization theory developed by Y.Yamamoto for general infinite-dimensional dynamical systems, we obtain necessary and sufficient conditions, expressed in the frequency domain, for the approximate controllability in finite time in $L^q$ spaces, $q \\in [1, +\\infty)$. We also provide a necessary condition for $L^1$ exact controllability, which can be seen as the closure of the $L^1$ approximate controllability criterion. Furthermore, we provide an explicit upper bound on the minimal times of approximate and exact controllability, given by $d\\max\\{\\Lambda_1,\\dots,\\Lambda_N\\}$, where $d$ is the dimension of the state space.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hautus–Yamamoto criteria for approximate and exact controllability of linear difference delay equations\",\"authors\":\"Y. Chitour, S'ebastien Fueyo, Guilherme Mazanti, M. Sigalotti\",\"doi\":\"10.3934/dcds.2023049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the controllability of finite-dimensional linear difference delay equations, i.e., dynamics for which the state at a given time $t$ is obtained as a linear combination of the control evaluated at time $t$ and of the state evaluated at finitely many previous instants of time $t-\\\\Lambda_1,\\\\dots,t-\\\\Lambda_N$. Based on the realization theory developed by Y.Yamamoto for general infinite-dimensional dynamical systems, we obtain necessary and sufficient conditions, expressed in the frequency domain, for the approximate controllability in finite time in $L^q$ spaces, $q \\\\in [1, +\\\\infty)$. We also provide a necessary condition for $L^1$ exact controllability, which can be seen as the closure of the $L^1$ approximate controllability criterion. Furthermore, we provide an explicit upper bound on the minimal times of approximate and exact controllability, given by $d\\\\max\\\\{\\\\Lambda_1,\\\\dots,\\\\Lambda_N\\\\}$, where $d$ is the dimension of the state space.\",\"PeriodicalId\":51007,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023049\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcds.2023049","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hautus–Yamamoto criteria for approximate and exact controllability of linear difference delay equations
The paper deals with the controllability of finite-dimensional linear difference delay equations, i.e., dynamics for which the state at a given time $t$ is obtained as a linear combination of the control evaluated at time $t$ and of the state evaluated at finitely many previous instants of time $t-\Lambda_1,\dots,t-\Lambda_N$. Based on the realization theory developed by Y.Yamamoto for general infinite-dimensional dynamical systems, we obtain necessary and sufficient conditions, expressed in the frequency domain, for the approximate controllability in finite time in $L^q$ spaces, $q \in [1, +\infty)$. We also provide a necessary condition for $L^1$ exact controllability, which can be seen as the closure of the $L^1$ approximate controllability criterion. Furthermore, we provide an explicit upper bound on the minimal times of approximate and exact controllability, given by $d\max\{\Lambda_1,\dots,\Lambda_N\}$, where $d$ is the dimension of the state space.
期刊介绍:
DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.