基于混合进化算法的电池系统放电寿命建模与预测

Hongqing Cao , Jingxian Yu , Lishan Kang , Hanxi Yang , Xinping Ai
{"title":"基于混合进化算法的电池系统放电寿命建模与预测","authors":"Hongqing Cao ,&nbsp;Jingxian Yu ,&nbsp;Lishan Kang ,&nbsp;Hanxi Yang ,&nbsp;Xinping Ai","doi":"10.1016/S0097-8485(00)00099-1","DOIUrl":null,"url":null,"abstract":"<div><p>A hybrid evolutionary modeling algorithm (HEMA) is proposed to build the discharge lifetime models with multiple impact factors for battery systems as well as make predictions. The main idea of the HEMA is to embed a genetic algorithm (GA) into genetic programming (GP), where GP is employed to optimize the structure of a model, while a GA is employed to optimize its parameters. The experimental results on lithium–ion batteries show that the HEMA works effectively, automatically and quickly in modeling the discharge lifetime of battery systems. The algorithm has some advantages compared with most existing modeling methods and can be applied widely to solving the automatic modeling problems in many fields.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"25 3","pages":"Pages 251-259"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(00)00099-1","citationCount":"12","resultStr":"{\"title\":\"Modeling and prediction for discharge lifetime of battery systems using hybrid evolutionary algorithms\",\"authors\":\"Hongqing Cao ,&nbsp;Jingxian Yu ,&nbsp;Lishan Kang ,&nbsp;Hanxi Yang ,&nbsp;Xinping Ai\",\"doi\":\"10.1016/S0097-8485(00)00099-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A hybrid evolutionary modeling algorithm (HEMA) is proposed to build the discharge lifetime models with multiple impact factors for battery systems as well as make predictions. The main idea of the HEMA is to embed a genetic algorithm (GA) into genetic programming (GP), where GP is employed to optimize the structure of a model, while a GA is employed to optimize its parameters. The experimental results on lithium–ion batteries show that the HEMA works effectively, automatically and quickly in modeling the discharge lifetime of battery systems. The algorithm has some advantages compared with most existing modeling methods and can be applied widely to solving the automatic modeling problems in many fields.</p></div>\",\"PeriodicalId\":79331,\"journal\":{\"name\":\"Computers & chemistry\",\"volume\":\"25 3\",\"pages\":\"Pages 251-259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0097-8485(00)00099-1\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097848500000991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848500000991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种混合进化建模算法(HEMA),用于建立具有多影响因素的电池系统放电寿命模型并进行预测。HEMA的主要思想是将遗传算法(GA)嵌入到遗传规划(GP)中,其中遗传算法用于优化模型的结构,遗传算法用于优化模型的参数。锂离子电池的实验结果表明,HEMA能够有效、自动、快速地模拟电池系统的放电寿命。与大多数现有的建模方法相比,该算法具有一定的优势,可广泛应用于解决许多领域的自动建模问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and prediction for discharge lifetime of battery systems using hybrid evolutionary algorithms

A hybrid evolutionary modeling algorithm (HEMA) is proposed to build the discharge lifetime models with multiple impact factors for battery systems as well as make predictions. The main idea of the HEMA is to embed a genetic algorithm (GA) into genetic programming (GP), where GP is employed to optimize the structure of a model, while a GA is employed to optimize its parameters. The experimental results on lithium–ion batteries show that the HEMA works effectively, automatically and quickly in modeling the discharge lifetime of battery systems. The algorithm has some advantages compared with most existing modeling methods and can be applied widely to solving the automatic modeling problems in many fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instructions to authors Author Index Keyword Index Volume contents New molecular surface-based 3D-QSAR method using Kohonen neural network and 3-way PLS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1