{"title":"基于人体关节刚度特性的关节刚度和拮抗角辅助控制方法及其在外骨骼上的应用","authors":"Seigo Kimura, Ryuji Suzuki, Masashi Kashima, M. Okui, Rie Nishihama, Taro Nakamura","doi":"10.1109/ICAR46387.2019.8981664","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an assistance method that controls joint stiffness and the antagonized angle using variable elastic elements. The proposed system changes the stiffness and angle so that they correspond to the phase of movement and performs movement assistance in cooperation with the wearer. To achieve structural variability in the configuration of stiffness and the antagonized angle, we propose a joint structure in which the artificial muscle and tension spring are antagonistically arranged. While performing a movement, motion analysis was conducted to investigate the change in joint stiffness and antagonized angle. We confirmed that the proposed joint and human joint have the same tendency while in motion.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"65 1","pages":"553-559"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Assistive method that controls joint stiffness and antagonized angle based on human joint stiffness characteristics and its application to an exoskeleton\",\"authors\":\"Seigo Kimura, Ryuji Suzuki, Masashi Kashima, M. Okui, Rie Nishihama, Taro Nakamura\",\"doi\":\"10.1109/ICAR46387.2019.8981664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an assistance method that controls joint stiffness and the antagonized angle using variable elastic elements. The proposed system changes the stiffness and angle so that they correspond to the phase of movement and performs movement assistance in cooperation with the wearer. To achieve structural variability in the configuration of stiffness and the antagonized angle, we propose a joint structure in which the artificial muscle and tension spring are antagonistically arranged. While performing a movement, motion analysis was conducted to investigate the change in joint stiffness and antagonized angle. We confirmed that the proposed joint and human joint have the same tendency while in motion.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"65 1\",\"pages\":\"553-559\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assistive method that controls joint stiffness and antagonized angle based on human joint stiffness characteristics and its application to an exoskeleton
In this paper, we propose an assistance method that controls joint stiffness and the antagonized angle using variable elastic elements. The proposed system changes the stiffness and angle so that they correspond to the phase of movement and performs movement assistance in cooperation with the wearer. To achieve structural variability in the configuration of stiffness and the antagonized angle, we propose a joint structure in which the artificial muscle and tension spring are antagonistically arranged. While performing a movement, motion analysis was conducted to investigate the change in joint stiffness and antagonized angle. We confirmed that the proposed joint and human joint have the same tendency while in motion.