{"title":"铜掺杂对NiO薄膜光学和结构性能影响的研究","authors":"S. Benramache, B. Benhaoua, Hanane Guezzoun","doi":"10.2478/awutp-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract In this work, copper doped nickel oxide as the thin films have been elaborated by a spin coating method, the nickel chloride hexahydrate (0.8M) and copper (II) chloride dehydrate (Cu/Ni = 0, 2.15, 4.3, 8.6 and 12.9 At.%) were used to prepare the Cu doped NiO thin films. The Cu doped NiO thin films were heated at a crystallization temperature of 600 °C with 2 h. The obtained thin films by spin coater method have a film thickness in the order of 400 nm. The prepared Cu doped NiO thin films have a polycrystalline with cubic structure (200) peak was observed. The optical property shows that the prepared thin films have a transmittance of about 70 %. The Cu doped NiO thin films have minimum bandgap energy is 3.85 eV at 12.9 at.%, the thin film deposited at 8.6 at.% has the highest value of Urbach energy is 425 meV. The Cu doped NiO thin films have a high electrical conductivity of 8.6 at% it is 7 (Ω.cm)−1. The prepared Cu doped NiO thin film was suitable for gas sensing applications due to the existing phase and higher electrical conductivity.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":"15 1","pages":"15 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study the Effect of Cu Doping on Optical and Structural Properties of NiO Thin Films\",\"authors\":\"S. Benramache, B. Benhaoua, Hanane Guezzoun\",\"doi\":\"10.2478/awutp-2020-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, copper doped nickel oxide as the thin films have been elaborated by a spin coating method, the nickel chloride hexahydrate (0.8M) and copper (II) chloride dehydrate (Cu/Ni = 0, 2.15, 4.3, 8.6 and 12.9 At.%) were used to prepare the Cu doped NiO thin films. The Cu doped NiO thin films were heated at a crystallization temperature of 600 °C with 2 h. The obtained thin films by spin coater method have a film thickness in the order of 400 nm. The prepared Cu doped NiO thin films have a polycrystalline with cubic structure (200) peak was observed. The optical property shows that the prepared thin films have a transmittance of about 70 %. The Cu doped NiO thin films have minimum bandgap energy is 3.85 eV at 12.9 at.%, the thin film deposited at 8.6 at.% has the highest value of Urbach energy is 425 meV. The Cu doped NiO thin films have a high electrical conductivity of 8.6 at% it is 7 (Ω.cm)−1. The prepared Cu doped NiO thin film was suitable for gas sensing applications due to the existing phase and higher electrical conductivity.\",\"PeriodicalId\":31012,\"journal\":{\"name\":\"Annals of West University of Timisoara Physics\",\"volume\":\"15 1\",\"pages\":\"15 - 22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of West University of Timisoara Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/awutp-2020-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of West University of Timisoara Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/awutp-2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study the Effect of Cu Doping on Optical and Structural Properties of NiO Thin Films
Abstract In this work, copper doped nickel oxide as the thin films have been elaborated by a spin coating method, the nickel chloride hexahydrate (0.8M) and copper (II) chloride dehydrate (Cu/Ni = 0, 2.15, 4.3, 8.6 and 12.9 At.%) were used to prepare the Cu doped NiO thin films. The Cu doped NiO thin films were heated at a crystallization temperature of 600 °C with 2 h. The obtained thin films by spin coater method have a film thickness in the order of 400 nm. The prepared Cu doped NiO thin films have a polycrystalline with cubic structure (200) peak was observed. The optical property shows that the prepared thin films have a transmittance of about 70 %. The Cu doped NiO thin films have minimum bandgap energy is 3.85 eV at 12.9 at.%, the thin film deposited at 8.6 at.% has the highest value of Urbach energy is 425 meV. The Cu doped NiO thin films have a high electrical conductivity of 8.6 at% it is 7 (Ω.cm)−1. The prepared Cu doped NiO thin film was suitable for gas sensing applications due to the existing phase and higher electrical conductivity.