R. Mydin, R. Hazan, Mustafa FadzilFaridWajidi, S. Sreekantan
{"title":"用于生物医学植入材料和纳米医学应用的二氧化钛纳米管阵列","authors":"R. Mydin, R. Hazan, Mustafa FadzilFaridWajidi, S. Sreekantan","doi":"10.5772/INTECHOPEN.73060","DOIUrl":null,"url":null,"abstract":"Nanotechnology has become a research hotspot to explore functional nanodevices and design materials compatible with nanoscale topography. Recently, titanium dioxide nanotube arrays (TNA) have garnered considerable interest as biomedical implant materials and nanomedicine applications (such as nanotherapeutics, nanodiagnostics and nanobiosensors). In bio-implants studies, the properties of TNA nanostructures could modulate diverse cellular processes, such as cell adhesion, migration, proliferation, and differentiation. Furthermore, this unique structure of TNA provides larger surface area and energy to regulate positive cellular interactions toward the mechanosensitivity activities. As for an advanced medical application, the TNA—biomolecular interactions knowledge are critical for further characterization of nanomaterial particularly in nanotherapeutic manipulation. Knowledge of these aspects will create opportunities for better understanding which may help researchers to develop better nanomaterial products to be used in medicine and health-line services.","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Titanium Dioxide Nanotube Arrays for Biomedical Implant Materials and Nanomedicine Applications\",\"authors\":\"R. Mydin, R. Hazan, Mustafa FadzilFaridWajidi, S. Sreekantan\",\"doi\":\"10.5772/INTECHOPEN.73060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotechnology has become a research hotspot to explore functional nanodevices and design materials compatible with nanoscale topography. Recently, titanium dioxide nanotube arrays (TNA) have garnered considerable interest as biomedical implant materials and nanomedicine applications (such as nanotherapeutics, nanodiagnostics and nanobiosensors). In bio-implants studies, the properties of TNA nanostructures could modulate diverse cellular processes, such as cell adhesion, migration, proliferation, and differentiation. Furthermore, this unique structure of TNA provides larger surface area and energy to regulate positive cellular interactions toward the mechanosensitivity activities. As for an advanced medical application, the TNA—biomolecular interactions knowledge are critical for further characterization of nanomaterial particularly in nanotherapeutic manipulation. Knowledge of these aspects will create opportunities for better understanding which may help researchers to develop better nanomaterial products to be used in medicine and health-line services.\",\"PeriodicalId\":23104,\"journal\":{\"name\":\"Titanium Dioxide - Material for a Sustainable Environment\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Titanium Dioxide - Material for a Sustainable Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.73060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Titanium Dioxide - Material for a Sustainable Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.73060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Titanium Dioxide Nanotube Arrays for Biomedical Implant Materials and Nanomedicine Applications
Nanotechnology has become a research hotspot to explore functional nanodevices and design materials compatible with nanoscale topography. Recently, titanium dioxide nanotube arrays (TNA) have garnered considerable interest as biomedical implant materials and nanomedicine applications (such as nanotherapeutics, nanodiagnostics and nanobiosensors). In bio-implants studies, the properties of TNA nanostructures could modulate diverse cellular processes, such as cell adhesion, migration, proliferation, and differentiation. Furthermore, this unique structure of TNA provides larger surface area and energy to regulate positive cellular interactions toward the mechanosensitivity activities. As for an advanced medical application, the TNA—biomolecular interactions knowledge are critical for further characterization of nanomaterial particularly in nanotherapeutic manipulation. Knowledge of these aspects will create opportunities for better understanding which may help researchers to develop better nanomaterial products to be used in medicine and health-line services.