石膏墙板隔墙传热参数分析

M. Bruns, K. Prasad
{"title":"石膏墙板隔墙传热参数分析","authors":"M. Bruns, K. Prasad","doi":"10.3801/iafss.fss.11-598","DOIUrl":null,"url":null,"abstract":"One-dimensional heat transfer in gypsum wallboard partitions is studied using sensitivity analysis and calibration by error minimization. Analysis of an existing heat and mass transfer model indicates that mass transfer and condensation of water vapor are not of primary importance in predicting board temperatures. A computationally efficient and robust heat transfer model is developed for predicting temperatures in gypsum wallboard partitions. Kinetic parameters are calibrated by error minimization with respect to literature thermogravimetric analysis (TGA) data. Additional thermophysical parameters are calibrated by error minimization with respect to literature ASTM E119 furnace test data. It is found that the calibrated heat transfer model is capable of predicting board temperatures given large thermal conductivities and specific heats at high temperatures. It is hypothesized that these observations imply the need to account for porous media radiation, temperature varying specific heats, and calcium carbonate decomposition in future models. Local sensitivity analysis reveals that board temperatures are most sensitive to initial density, thermal conductivity at moderately high temperatures ( 800 C), and the activation energy of the dehydration reactions. Conversely, model predictions are relatively insensitive to dehydration reaction pre-exponentials and low-temperature heat capacities.","PeriodicalId":12145,"journal":{"name":"Fire Safety Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parametric Analysis of Heat Transfer in Gypsum Wallboard Partitions\",\"authors\":\"M. Bruns, K. Prasad\",\"doi\":\"10.3801/iafss.fss.11-598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One-dimensional heat transfer in gypsum wallboard partitions is studied using sensitivity analysis and calibration by error minimization. Analysis of an existing heat and mass transfer model indicates that mass transfer and condensation of water vapor are not of primary importance in predicting board temperatures. A computationally efficient and robust heat transfer model is developed for predicting temperatures in gypsum wallboard partitions. Kinetic parameters are calibrated by error minimization with respect to literature thermogravimetric analysis (TGA) data. Additional thermophysical parameters are calibrated by error minimization with respect to literature ASTM E119 furnace test data. It is found that the calibrated heat transfer model is capable of predicting board temperatures given large thermal conductivities and specific heats at high temperatures. It is hypothesized that these observations imply the need to account for porous media radiation, temperature varying specific heats, and calcium carbonate decomposition in future models. Local sensitivity analysis reveals that board temperatures are most sensitive to initial density, thermal conductivity at moderately high temperatures ( 800 C), and the activation energy of the dehydration reactions. Conversely, model predictions are relatively insensitive to dehydration reaction pre-exponentials and low-temperature heat capacities.\",\"PeriodicalId\":12145,\"journal\":{\"name\":\"Fire Safety Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Science\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3801/iafss.fss.11-598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Science","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3801/iafss.fss.11-598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用灵敏度分析和误差最小化校正方法研究了石膏墙板隔板的一维传热。对现有的传热传质模型的分析表明,在预测板温度时,传质和水蒸气的冷凝并不是最重要的。建立了一种计算效率高、鲁棒性强的石膏墙板隔墙温度预测模型。动力学参数是通过误差最小化校准相对文献热重分析(TGA)数据。额外的热物理参数根据文献ASTM E119炉测试数据通过误差最小化进行校准。校正后的传热模型能够在较大导热系数和高温比热条件下预测板的温度。据推测,这些观测结果意味着在未来的模型中需要考虑多孔介质辐射、温度变化比热和碳酸钙分解。局部敏感性分析表明,板料温度对初始密度、中高温(800℃)下的导热系数和脱水反应的活化能最为敏感。相反,模型预测对脱水反应前指数和低温热容相对不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parametric Analysis of Heat Transfer in Gypsum Wallboard Partitions
One-dimensional heat transfer in gypsum wallboard partitions is studied using sensitivity analysis and calibration by error minimization. Analysis of an existing heat and mass transfer model indicates that mass transfer and condensation of water vapor are not of primary importance in predicting board temperatures. A computationally efficient and robust heat transfer model is developed for predicting temperatures in gypsum wallboard partitions. Kinetic parameters are calibrated by error minimization with respect to literature thermogravimetric analysis (TGA) data. Additional thermophysical parameters are calibrated by error minimization with respect to literature ASTM E119 furnace test data. It is found that the calibrated heat transfer model is capable of predicting board temperatures given large thermal conductivities and specific heats at high temperatures. It is hypothesized that these observations imply the need to account for porous media radiation, temperature varying specific heats, and calcium carbonate decomposition in future models. Local sensitivity analysis reveals that board temperatures are most sensitive to initial density, thermal conductivity at moderately high temperatures ( 800 C), and the activation energy of the dehydration reactions. Conversely, model predictions are relatively insensitive to dehydration reaction pre-exponentials and low-temperature heat capacities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling the Investigation of Structure Vulnerabilities to Wind- Driven Firebrand Showers in Wildland-Urban Interface (WUI) Fires Modeling of the pyrolysis of plywood exposed to heat fluxes under cone calorimeter Effective stress method to be used in beam finite elements to take local instabilities into account Spectral Aspects of Bench-Scale Flammability Testing: Application to Hardwood Pyrolysis Fundamental flame spread and toxicity evaluation of fire retarded polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1