高维数据集聚类的无监督特征选择方法

Marcos de Souza Oliveira, Sergio Queiroz
{"title":"高维数据集聚类的无监督特征选择方法","authors":"Marcos de Souza Oliveira, Sergio Queiroz","doi":"10.22456/2175-2745.96081","DOIUrl":null,"url":null,"abstract":"Feature selection is an important research area that seeks to eliminate unwanted features from datasets. Many feature selection methods are suggested in the literature, but the evaluation of the best set of features is usually performed using supervised metrics, where labels are required. In this work we propose a methodology that tries to aid data specialists to answer simple but important questions, such as: (1) do current feature selection methods give similar results? (2) is there is a consistently better method ? (3) how to select the  m -best features? (4) as the methods are not parameter-free, how to choose the best parameters in the unsupervised scenario? and (5) given different options of selection, could we get better results if we fusion the results of the methods? If yes, how can we combine the results? We analyze these issues and propose a methodology that, based on some unsupervised methods, will make feature selection using strategies that turn the execution of the process fully automatic and unsupervised, in high-dimensional datasets. After, we evaluate the obtained results, when we see that they are better than those obtained by using the selection methods at standard configurations. In the end, we also list some further improvements that can be made in future works.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unsupervised Feature Selection Methodology for Clustering in High Dimensionality Datasets\",\"authors\":\"Marcos de Souza Oliveira, Sergio Queiroz\",\"doi\":\"10.22456/2175-2745.96081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is an important research area that seeks to eliminate unwanted features from datasets. Many feature selection methods are suggested in the literature, but the evaluation of the best set of features is usually performed using supervised metrics, where labels are required. In this work we propose a methodology that tries to aid data specialists to answer simple but important questions, such as: (1) do current feature selection methods give similar results? (2) is there is a consistently better method ? (3) how to select the  m -best features? (4) as the methods are not parameter-free, how to choose the best parameters in the unsupervised scenario? and (5) given different options of selection, could we get better results if we fusion the results of the methods? If yes, how can we combine the results? We analyze these issues and propose a methodology that, based on some unsupervised methods, will make feature selection using strategies that turn the execution of the process fully automatic and unsupervised, in high-dimensional datasets. After, we evaluate the obtained results, when we see that they are better than those obtained by using the selection methods at standard configurations. In the end, we also list some further improvements that can be made in future works.\",\"PeriodicalId\":82472,\"journal\":{\"name\":\"Research initiative, treatment action : RITA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research initiative, treatment action : RITA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22456/2175-2745.96081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.96081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

特征选择是一个重要的研究领域,旨在从数据集中消除不需要的特征。文献中提出了许多特征选择方法,但对最佳特征集的评估通常使用监督度量来执行,其中需要标签。在这项工作中,我们提出了一种方法,试图帮助数据专家回答简单但重要的问题,例如:(1)当前的特征选择方法是否给出类似的结果?(2)是否有一贯更好的方法?(3)如何选择m个最优特征?(4)由于方法不是无参数的,如何在无监督场景下选择最佳参数?(5)在不同的选择选项下,如果将这些方法的结果进行融合,是否会得到更好的结果?如果是,我们如何结合结果?我们分析了这些问题,并提出了一种基于一些无监督方法的方法,该方法将在高维数据集中使用策略进行特征选择,使过程的执行完全自动化和无监督。之后,我们对得到的结果进行了评价,当我们看到它们比在标准配置下使用选择方法得到的结果要好。最后,提出了在今后的工作中需要进一步改进的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Feature Selection Methodology for Clustering in High Dimensionality Datasets
Feature selection is an important research area that seeks to eliminate unwanted features from datasets. Many feature selection methods are suggested in the literature, but the evaluation of the best set of features is usually performed using supervised metrics, where labels are required. In this work we propose a methodology that tries to aid data specialists to answer simple but important questions, such as: (1) do current feature selection methods give similar results? (2) is there is a consistently better method ? (3) how to select the  m -best features? (4) as the methods are not parameter-free, how to choose the best parameters in the unsupervised scenario? and (5) given different options of selection, could we get better results if we fusion the results of the methods? If yes, how can we combine the results? We analyze these issues and propose a methodology that, based on some unsupervised methods, will make feature selection using strategies that turn the execution of the process fully automatic and unsupervised, in high-dimensional datasets. After, we evaluate the obtained results, when we see that they are better than those obtained by using the selection methods at standard configurations. In the end, we also list some further improvements that can be made in future works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Causal Effect Estimation of Emotional Labeling of Watched Videos Exploring Supervised Techniques for Automated Recognition of Intention Classes from Portuguese Free Texts on Agriculture Stochastic Models for Planning VLE Moodle Environments based on Containers and Virtual Machines A Review of Testbeds on SCADA Systems with Malware Analysis A Conceptual Model for Situating Purposes in Artificial Institutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1