改善物联网网关的大规模接入

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Performance Evaluation Pub Date : 2022-10-01 DOI:10.1016/j.peva.2022.102308
Erol Gelenbe , Mert Nakıp, Tadeusz Czachórski
{"title":"改善物联网网关的大规模接入","authors":"Erol Gelenbe ,&nbsp;Mert Nakıp,&nbsp;Tadeusz Czachórski","doi":"10.1016/j.peva.2022.102308","DOIUrl":null,"url":null,"abstract":"<div><p>IoT networks handle incoming packets from large numbers of IoT Devices (IoTDs) to IoT Gateways. This can lead to the IoT Massive Access Problem that causes buffer overflow, large end-to-end delays and missed deadlines. This paper analyzes a novel traffic shaping method named the Quasi-Deterministic Traffic Policy (QDTP) that mitigates this problem by shaping the incoming traffic without increasing the end-to-end delay or dropping packets. Using queueing theoretic techniques and extensive data driven simulations with real IoT datasets, the value of QDTP is shown as a means to considerably reduce congestion at the Gateway, and significantly improve the IoT network’s overall performance.</p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"157 ","pages":"Article 102308"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166531622000219/pdfft?md5=a2c57652ab751313e9ab77ef1b537d4c&pid=1-s2.0-S0166531622000219-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Improving Massive Access to IoT Gateways\",\"authors\":\"Erol Gelenbe ,&nbsp;Mert Nakıp,&nbsp;Tadeusz Czachórski\",\"doi\":\"10.1016/j.peva.2022.102308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>IoT networks handle incoming packets from large numbers of IoT Devices (IoTDs) to IoT Gateways. This can lead to the IoT Massive Access Problem that causes buffer overflow, large end-to-end delays and missed deadlines. This paper analyzes a novel traffic shaping method named the Quasi-Deterministic Traffic Policy (QDTP) that mitigates this problem by shaping the incoming traffic without increasing the end-to-end delay or dropping packets. Using queueing theoretic techniques and extensive data driven simulations with real IoT datasets, the value of QDTP is shown as a means to considerably reduce congestion at the Gateway, and significantly improve the IoT network’s overall performance.</p></div>\",\"PeriodicalId\":19964,\"journal\":{\"name\":\"Performance Evaluation\",\"volume\":\"157 \",\"pages\":\"Article 102308\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166531622000219/pdfft?md5=a2c57652ab751313e9ab77ef1b537d4c&pid=1-s2.0-S0166531622000219-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166531622000219\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531622000219","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 3

摘要

物联网网络处理来自大量物联网设备(iotd)到物联网网关的传入数据包。这可能会导致物联网大规模访问问题,导致缓冲区溢出、大的端到端延迟和错过最后期限。本文分析了一种新的流量整形方法——准确定性流量策略(QDTP),该方法通过在不增加端到端延迟或丢包的情况下对传入流量进行整形来缓解这一问题。利用排队理论技术和广泛的数据驱动模拟与真实的物联网数据集,QDTP的价值被证明是一种显着减少网关拥塞的手段,并显着提高物联网网络的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Massive Access to IoT Gateways

IoT networks handle incoming packets from large numbers of IoT Devices (IoTDs) to IoT Gateways. This can lead to the IoT Massive Access Problem that causes buffer overflow, large end-to-end delays and missed deadlines. This paper analyzes a novel traffic shaping method named the Quasi-Deterministic Traffic Policy (QDTP) that mitigates this problem by shaping the incoming traffic without increasing the end-to-end delay or dropping packets. Using queueing theoretic techniques and extensive data driven simulations with real IoT datasets, the value of QDTP is shown as a means to considerably reduce congestion at the Gateway, and significantly improve the IoT network’s overall performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Performance Evaluation
Performance Evaluation 工程技术-计算机:理论方法
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
24 days
期刊介绍: Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions: -Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques -Provide new insights into the performance of computing and communication systems -Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools. More specifically, common application areas of interest include the performance of: -Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management) -System architecture, design and implementation -Cognitive radio -VANETs -Social networks and media -Energy efficient ICT -Energy harvesting -Data centers -Data centric networks -System reliability -System tuning and capacity planning -Wireless and sensor networks -Autonomic and self-organizing systems -Embedded systems -Network science
期刊最新文献
Analysis of a queue-length-dependent vacation queue with bulk service, N-policy, set-up time and cost optimization FedCust: Offloading hyperparameter customization for federated learning Trust your local scaler: A continuous, decentralized approach to autoscaling Enabling scalable and adaptive machine learning training via serverless computing on public cloud Symbolic state-space exploration meets statistical model checking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1