基于人脸识别的视频监控系统

Augusto F. S. Moura, S. S. L. Pereira, Mário W. L. Moreira, J. Rodrigues
{"title":"基于人脸识别的视频监控系统","authors":"Augusto F. S. Moura, S. S. L. Pereira, Mário W. L. Moreira, J. Rodrigues","doi":"10.1109/GLOBECOM42002.2020.9348216","DOIUrl":null,"url":null,"abstract":"Reductions in installation and storage costs have increased the demand for security systems, including video surveillance and digital authentication. The video surveillance systems, when monitored by humans, are subject to errors and are challenging to scale. Authentication systems can validate someone using a password or a card from another user. Facial recognition algorithms can solve this fault by the traffic monitoring of known individuals or intruders as well as for individual biometric authentication. Hence, this paper evaluates the FaceNet approach using the Labeled Faces in the Wild benchmark, as well as evaluates a machine learning technique known as support vector machine (SVM) for the classification of embedding generated using FaceNet. The suggested approach also models a real-time facial recognition system combining FaceNet and SVM, reaching 90% of accuracy using a medium webcam.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Video Monitoring System using Facial Recognition: A Facenet-based Approach\",\"authors\":\"Augusto F. S. Moura, S. S. L. Pereira, Mário W. L. Moreira, J. Rodrigues\",\"doi\":\"10.1109/GLOBECOM42002.2020.9348216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reductions in installation and storage costs have increased the demand for security systems, including video surveillance and digital authentication. The video surveillance systems, when monitored by humans, are subject to errors and are challenging to scale. Authentication systems can validate someone using a password or a card from another user. Facial recognition algorithms can solve this fault by the traffic monitoring of known individuals or intruders as well as for individual biometric authentication. Hence, this paper evaluates the FaceNet approach using the Labeled Faces in the Wild benchmark, as well as evaluates a machine learning technique known as support vector machine (SVM) for the classification of embedding generated using FaceNet. The suggested approach also models a real-time facial recognition system combining FaceNet and SVM, reaching 90% of accuracy using a medium webcam.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9348216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9348216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

安装和存储成本的降低增加了对安全系统的需求,包括视频监控和数字认证。视频监控系统在由人类监控时,容易出现错误,并且难以扩展。身份验证系统可以使用其他用户的密码或卡片来验证某人。人脸识别算法可以通过对已知个人或入侵者的流量监控以及个人生物特征认证来解决这一问题。因此,本文使用野生基准中的Labeled Faces评估FaceNet方法,并评估一种被称为支持向量机(SVM)的机器学习技术,用于使用FaceNet生成的嵌入分类。该方法还模拟了一个结合FaceNet和SVM的实时面部识别系统,使用中等网络摄像头达到90%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Video Monitoring System using Facial Recognition: A Facenet-based Approach
Reductions in installation and storage costs have increased the demand for security systems, including video surveillance and digital authentication. The video surveillance systems, when monitored by humans, are subject to errors and are challenging to scale. Authentication systems can validate someone using a password or a card from another user. Facial recognition algorithms can solve this fault by the traffic monitoring of known individuals or intruders as well as for individual biometric authentication. Hence, this paper evaluates the FaceNet approach using the Labeled Faces in the Wild benchmark, as well as evaluates a machine learning technique known as support vector machine (SVM) for the classification of embedding generated using FaceNet. The suggested approach also models a real-time facial recognition system combining FaceNet and SVM, reaching 90% of accuracy using a medium webcam.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AirID: Injecting a Custom RF Fingerprint for Enhanced UAV Identification using Deep Learning Oversampling Algorithm based on Reinforcement Learning in Imbalanced Problems FAST-RAM: A Fast AI-assistant Solution for Task Offloading and Resource Allocation in MEC Achieving Privacy-Preserving Vehicle Selection for Effective Content Dissemination in Smart Cities Age-optimal Transmission Policy for Markov Source with Differential Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1