评估高合金不锈钢在料浆冲击和单次冲击时的电化学响应,以提高对侵蚀腐蚀的认识

A. Neville, X. Hu
{"title":"评估高合金不锈钢在料浆冲击和单次冲击时的电化学响应,以提高对侵蚀腐蚀的认识","authors":"A. Neville, X. Hu","doi":"10.1179/000705902225002321","DOIUrl":null,"url":null,"abstract":"Abstract Erosion-corrosion by liquid-solid impact results in damage on high alloy stainless steels where slurries are transported through pipes, valves, and pumps. It is well recognised that this damage is caused by a complex combination of mechanical (impact) and electrochemical (corrosion) processes. The synergy between erosion and corrosion is significant and depends on the nature of the materials and the aqueous environment. As part of a wider study investigating the mechanisms or erosion-corrosion of high alloy stainless steels, a series of electrochemical tests under multiple particle erosion-corrosion conditions and single impact conditions have been performed. In this paper the electrochemical behaviour under slurry erosion-corrosion and the transient electrochemical response under single impact of three stainless steels (UNS S31254, UNS S32654, and UNS S32750) is assessed. The depassivation and repassivation characteristics of the surface are characterised and these results are discussed in relation to the overall performance of the materials under erosion-corrosion conditions.","PeriodicalId":9349,"journal":{"name":"British Corrosion Journal","volume":"7 1","pages":"43 - 47"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Assessment of electrochemical response from high alloy stainless steels during slurry impingement and single impacts to improve understanding of erosion–corrosion\",\"authors\":\"A. Neville, X. Hu\",\"doi\":\"10.1179/000705902225002321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Erosion-corrosion by liquid-solid impact results in damage on high alloy stainless steels where slurries are transported through pipes, valves, and pumps. It is well recognised that this damage is caused by a complex combination of mechanical (impact) and electrochemical (corrosion) processes. The synergy between erosion and corrosion is significant and depends on the nature of the materials and the aqueous environment. As part of a wider study investigating the mechanisms or erosion-corrosion of high alloy stainless steels, a series of electrochemical tests under multiple particle erosion-corrosion conditions and single impact conditions have been performed. In this paper the electrochemical behaviour under slurry erosion-corrosion and the transient electrochemical response under single impact of three stainless steels (UNS S31254, UNS S32654, and UNS S32750) is assessed. The depassivation and repassivation characteristics of the surface are characterised and these results are discussed in relation to the overall performance of the materials under erosion-corrosion conditions.\",\"PeriodicalId\":9349,\"journal\":{\"name\":\"British Corrosion Journal\",\"volume\":\"7 1\",\"pages\":\"43 - 47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Corrosion Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/000705902225002321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Corrosion Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/000705902225002321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

摘要:液体-固体冲击对高合金不锈钢造成腐蚀,其中浆液通过管道、阀门和泵输送。众所周知,这种损伤是由机械(冲击)和电化学(腐蚀)过程的复杂组合引起的。侵蚀和腐蚀之间的协同作用是重要的,取决于材料和水环境的性质。作为高合金不锈钢冲蚀机理研究的一部分,在多颗粒冲蚀条件和单冲击条件下进行了一系列电化学测试。本文研究了三种不锈钢(UNS S31254、UNS S32654和UNS S32750)在浆液侵蚀腐蚀下的电化学行为和单次冲击下的瞬态电化学响应。描述了表面的钝化和再钝化特性,并讨论了这些结果与材料在侵蚀-腐蚀条件下的整体性能的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of electrochemical response from high alloy stainless steels during slurry impingement and single impacts to improve understanding of erosion–corrosion
Abstract Erosion-corrosion by liquid-solid impact results in damage on high alloy stainless steels where slurries are transported through pipes, valves, and pumps. It is well recognised that this damage is caused by a complex combination of mechanical (impact) and electrochemical (corrosion) processes. The synergy between erosion and corrosion is significant and depends on the nature of the materials and the aqueous environment. As part of a wider study investigating the mechanisms or erosion-corrosion of high alloy stainless steels, a series of electrochemical tests under multiple particle erosion-corrosion conditions and single impact conditions have been performed. In this paper the electrochemical behaviour under slurry erosion-corrosion and the transient electrochemical response under single impact of three stainless steels (UNS S31254, UNS S32654, and UNS S32750) is assessed. The depassivation and repassivation characteristics of the surface are characterised and these results are discussed in relation to the overall performance of the materials under erosion-corrosion conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Localised corrosion behaviour of alloys 33 and 24 in simulated flue gas desulphurisation environment Corrosion protection of 1008 carbon steel by hybrid coatings Electrochemical behaviour of copper-nickel alloys in stagnant Na2CO3 solutions Electrochemical and spectroscopic investigation of synergestic effects in corrosion inhibition of aluminium bronze Part 1 – In pure HCl Corrosion news and views
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1