{"title":"体育锻炼对阿尔茨海默病的益处:一种表观遗传学观点","authors":"Song Li","doi":"10.20517/and.2022.37","DOIUrl":null,"url":null,"abstract":"Increasing lines of evidence have indicated the beneficial impacts of exercise on the neurodegeneration and cognitive decline of Alzheimer’s disease (AD). While general mechanisms underlying the positive effects, including the elevated neurotrophins level, improved neurogenesis and neuroplasticity, restored angiogenesis and autophagy, and reduced neuroinflammation, have been well documented, the epigenetic mechanisms of exercise on AD, however, are still inconclusive. Exercise can regulate the expression of those AD-related genes or proteins through various epigenetic modulations, thereafter rescuing AD pathologies and improving cognitive deficits of AD. In this review, we briefly summarized recent research advances in the beneficial impacts of exercise on cognition and AD and discussed the underlying mechanisms from an epigenetic point of view, including DNA methylation, histone modifications, and non-coding RNAs. A deep understanding of how exercise epigenetically promotes cognitive and pathological recoveries in AD is crucial for the future discovery of precise exercise procedures or exercise-like remedies to treat this disease.","PeriodicalId":93251,"journal":{"name":"Ageing and neurodegenerative diseases","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benefits of physical exercise on Alzheimer's disease: an epigenetic view\",\"authors\":\"Song Li\",\"doi\":\"10.20517/and.2022.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing lines of evidence have indicated the beneficial impacts of exercise on the neurodegeneration and cognitive decline of Alzheimer’s disease (AD). While general mechanisms underlying the positive effects, including the elevated neurotrophins level, improved neurogenesis and neuroplasticity, restored angiogenesis and autophagy, and reduced neuroinflammation, have been well documented, the epigenetic mechanisms of exercise on AD, however, are still inconclusive. Exercise can regulate the expression of those AD-related genes or proteins through various epigenetic modulations, thereafter rescuing AD pathologies and improving cognitive deficits of AD. In this review, we briefly summarized recent research advances in the beneficial impacts of exercise on cognition and AD and discussed the underlying mechanisms from an epigenetic point of view, including DNA methylation, histone modifications, and non-coding RNAs. A deep understanding of how exercise epigenetically promotes cognitive and pathological recoveries in AD is crucial for the future discovery of precise exercise procedures or exercise-like remedies to treat this disease.\",\"PeriodicalId\":93251,\"journal\":{\"name\":\"Ageing and neurodegenerative diseases\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing and neurodegenerative diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/and.2022.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing and neurodegenerative diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/and.2022.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Benefits of physical exercise on Alzheimer's disease: an epigenetic view
Increasing lines of evidence have indicated the beneficial impacts of exercise on the neurodegeneration and cognitive decline of Alzheimer’s disease (AD). While general mechanisms underlying the positive effects, including the elevated neurotrophins level, improved neurogenesis and neuroplasticity, restored angiogenesis and autophagy, and reduced neuroinflammation, have been well documented, the epigenetic mechanisms of exercise on AD, however, are still inconclusive. Exercise can regulate the expression of those AD-related genes or proteins through various epigenetic modulations, thereafter rescuing AD pathologies and improving cognitive deficits of AD. In this review, we briefly summarized recent research advances in the beneficial impacts of exercise on cognition and AD and discussed the underlying mechanisms from an epigenetic point of view, including DNA methylation, histone modifications, and non-coding RNAs. A deep understanding of how exercise epigenetically promotes cognitive and pathological recoveries in AD is crucial for the future discovery of precise exercise procedures or exercise-like remedies to treat this disease.