{"title":"基于改进Elman神经网络的发动机任务故障诊断","authors":"Yu guo Wu, C. Song, Li Ping Shi","doi":"10.1109/ICNC.2010.5582900","DOIUrl":null,"url":null,"abstract":"Based on the fault diagnosis system of engine mission and Elman neural network, it analyses the shortage diagnosis of Elman network, and puts forward the modified Elman network, and applied in fault diagnosis of engine mission. By using conventional “frequency domain” analysis method, modified Elman networks fault diagnosis of engine mission is carried out. It is proved that fault diagnosis of engine mission based on neural networks has upper precision and diagnosed engine mission, improved effectiveness and quality of diagnosis.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"30 1","pages":"996-998"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault diagnosis of engine mission using modified Elman neural network\",\"authors\":\"Yu guo Wu, C. Song, Li Ping Shi\",\"doi\":\"10.1109/ICNC.2010.5582900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the fault diagnosis system of engine mission and Elman neural network, it analyses the shortage diagnosis of Elman network, and puts forward the modified Elman network, and applied in fault diagnosis of engine mission. By using conventional “frequency domain” analysis method, modified Elman networks fault diagnosis of engine mission is carried out. It is proved that fault diagnosis of engine mission based on neural networks has upper precision and diagnosed engine mission, improved effectiveness and quality of diagnosis.\",\"PeriodicalId\":87274,\"journal\":{\"name\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"volume\":\"30 1\",\"pages\":\"996-998\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2010.5582900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2010.5582900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以发动机任务故障诊断系统和Elman神经网络为基础,分析了Elman网络诊断的不足,提出了改进的Elman网络,并将其应用于发动机任务故障诊断。利用传统的“频域”分析方法,对发动机任务进行了改进的Elman网络故障诊断。结果表明,基于神经网络的发动机任务故障诊断具有较高的诊断精度和诊断效果,提高了诊断的有效性和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault diagnosis of engine mission using modified Elman neural network
Based on the fault diagnosis system of engine mission and Elman neural network, it analyses the shortage diagnosis of Elman network, and puts forward the modified Elman network, and applied in fault diagnosis of engine mission. By using conventional “frequency domain” analysis method, modified Elman networks fault diagnosis of engine mission is carried out. It is proved that fault diagnosis of engine mission based on neural networks has upper precision and diagnosed engine mission, improved effectiveness and quality of diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BER and HPA Nonlinearities Compensation for Joint Polar Coded SCMA System over Rayleigh Fading Channels Harmonizing Wearable Biosensor Data Streams to Test Polysubstance Detection. eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data. Automatic Detection of Opioid Intake Using Wearable Biosensor. A New Mining Method to Detect Real Time Substance Use Events from Wearable Biosensor Data Stream.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1