Seyed Hossein Mirhosseini, M. Mosallaee, M. Razavi, M. Fotouhi
{"title":"等离子喷涂Al2O3-TiB2-SiC三元复合涂层及其基于SiC含量的磨损性能","authors":"Seyed Hossein Mirhosseini, M. Mosallaee, M. Razavi, M. Fotouhi","doi":"10.1080/17515831.2023.2232990","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper aims to study the effect of adding different SiC content on the wear performance of Al2O3-TiB2-SiC ternary composite coatings produced by the air plasma spraying process. The study used SHS powders as primary materials, consisting of H3BO3, Al, and TiO2, and 5, 10, and 15 Vol.% SiC. The microstructure and wear specifications of the coatings were characterised using FESEM, microhardness, and pin-on-disk methods. The results showed that the addition of SiC led to higher hardness and lower wear track width and rate compared to Al2O3-TiB2 composite coatings. The best wear behaviour was observed in Al2O3-TiB2-10%SiC and 15 wt% SiC composite coatings. The main wear mechanisms were found to be brittle fracture, delamination and adhesive for all samples. GRAPHICAL ABSTRACT","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":"3 1","pages":"309 - 323"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-sprayed Al2O3-TiB2-SiC ternary composite coatings and its wear behaviour based on SiC content\",\"authors\":\"Seyed Hossein Mirhosseini, M. Mosallaee, M. Razavi, M. Fotouhi\",\"doi\":\"10.1080/17515831.2023.2232990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper aims to study the effect of adding different SiC content on the wear performance of Al2O3-TiB2-SiC ternary composite coatings produced by the air plasma spraying process. The study used SHS powders as primary materials, consisting of H3BO3, Al, and TiO2, and 5, 10, and 15 Vol.% SiC. The microstructure and wear specifications of the coatings were characterised using FESEM, microhardness, and pin-on-disk methods. The results showed that the addition of SiC led to higher hardness and lower wear track width and rate compared to Al2O3-TiB2 composite coatings. The best wear behaviour was observed in Al2O3-TiB2-10%SiC and 15 wt% SiC composite coatings. The main wear mechanisms were found to be brittle fracture, delamination and adhesive for all samples. GRAPHICAL ABSTRACT\",\"PeriodicalId\":23331,\"journal\":{\"name\":\"Tribology - Materials, Surfaces & Interfaces\",\"volume\":\"3 1\",\"pages\":\"309 - 323\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology - Materials, Surfaces & Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17515831.2023.2232990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2023.2232990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Plasma-sprayed Al2O3-TiB2-SiC ternary composite coatings and its wear behaviour based on SiC content
ABSTRACT This paper aims to study the effect of adding different SiC content on the wear performance of Al2O3-TiB2-SiC ternary composite coatings produced by the air plasma spraying process. The study used SHS powders as primary materials, consisting of H3BO3, Al, and TiO2, and 5, 10, and 15 Vol.% SiC. The microstructure and wear specifications of the coatings were characterised using FESEM, microhardness, and pin-on-disk methods. The results showed that the addition of SiC led to higher hardness and lower wear track width and rate compared to Al2O3-TiB2 composite coatings. The best wear behaviour was observed in Al2O3-TiB2-10%SiC and 15 wt% SiC composite coatings. The main wear mechanisms were found to be brittle fracture, delamination and adhesive for all samples. GRAPHICAL ABSTRACT