基于双标记的因果关系提取级联模型

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Advanced Computational Intelligence and Intelligent Informatics Pub Date : 2023-05-20 DOI:10.20965/jaciii.2023.p0421
Fengxiao Yan, Bo Shen, Chenyang Dai
{"title":"基于双标记的因果关系提取级联模型","authors":"Fengxiao Yan, Bo Shen, Chenyang Dai","doi":"10.20965/jaciii.2023.p0421","DOIUrl":null,"url":null,"abstract":"Causal relation extraction is a crucial task in natural language processing. Current extraction methods have problems, including low accuracy of causal-event division and incorrect extraction of important semantic features. This study uses the bidirectional long short-term memory (BiLSTM) and attentive convolutional neural network (ACNN) models to construct a cascaded causal relationship extraction model to improve the precision of the extraction. The model uses two kinds of labels and then divides the causal event boundary after determining the relationship between the front and rear causal events. It automatically learns semantic features from sentences, reducing the dependence on external knowledge and improving the precision of extraction. The experimental results demonstrate that the precision of causality extraction can reach 81.67% and the F1 value can reach 83.2%.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"50 1","pages":"421-430"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causality Extraction Cascade Model Based on Dual Labeling\",\"authors\":\"Fengxiao Yan, Bo Shen, Chenyang Dai\",\"doi\":\"10.20965/jaciii.2023.p0421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Causal relation extraction is a crucial task in natural language processing. Current extraction methods have problems, including low accuracy of causal-event division and incorrect extraction of important semantic features. This study uses the bidirectional long short-term memory (BiLSTM) and attentive convolutional neural network (ACNN) models to construct a cascaded causal relationship extraction model to improve the precision of the extraction. The model uses two kinds of labels and then divides the causal event boundary after determining the relationship between the front and rear causal events. It automatically learns semantic features from sentences, reducing the dependence on external knowledge and improving the precision of extraction. The experimental results demonstrate that the precision of causality extraction can reach 81.67% and the F1 value can reach 83.2%.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"50 1\",\"pages\":\"421-430\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

因果关系提取是自然语言处理中的一项重要任务。现有的提取方法存在因果事件划分精度低、重要语义特征提取不正确等问题。本研究利用双向长短期记忆(BiLSTM)和注意卷积神经网络(ACNN)模型构建了级联因果关系提取模型,以提高提取精度。该模型使用两种标签,在确定前后因果事件之间的关系后,划分因果事件边界。自动从句子中学习语义特征,减少了对外部知识的依赖,提高了提取的精度。实验结果表明,因果关系提取精度可达81.67%,F1值可达83.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Causality Extraction Cascade Model Based on Dual Labeling
Causal relation extraction is a crucial task in natural language processing. Current extraction methods have problems, including low accuracy of causal-event division and incorrect extraction of important semantic features. This study uses the bidirectional long short-term memory (BiLSTM) and attentive convolutional neural network (ACNN) models to construct a cascaded causal relationship extraction model to improve the precision of the extraction. The model uses two kinds of labels and then divides the causal event boundary after determining the relationship between the front and rear causal events. It automatically learns semantic features from sentences, reducing the dependence on external knowledge and improving the precision of extraction. The experimental results demonstrate that the precision of causality extraction can reach 81.67% and the F1 value can reach 83.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
期刊最新文献
The Impact of Individual Heterogeneity on Household Asset Choice: An Empirical Study Based on China Family Panel Studies Private Placement, Investor Sentiment, and Stock Price Anomaly Does Increasing Public Service Expenditure Slow the Long-Term Economic Growth Rate?—Evidence from China Prediction and Characteristic Analysis of Enterprise Digital Transformation Integrating XGBoost and SHAP Industrial Chain Map and Linkage Network Characteristics of Digital Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1