度量格上的层次聚类

Xiangyan Meng, Muyan Liu, Jingyi Wu, Huiqiu Zhou, F. Xu, Qiufeng Wu
{"title":"度量格上的层次聚类","authors":"Xiangyan Meng, Muyan Liu, Jingyi Wu, Huiqiu Zhou, F. Xu, Qiufeng Wu","doi":"10.1504/ijiids.2020.10030210","DOIUrl":null,"url":null,"abstract":"This work proposes a new clustering algorithm named 'fuzzy interval number hierarchical clustering' (FINHC) by converting original data into fuzzy interval number (FIN) firstly, then it proves F that denotes the collection of FINs is a lattice and introduces a novel metric distance based on the results from lattice theory, as well as combining them with hierarchical clustering. The relevant mathematical background about lattice theory and the specific algorithm which is used to construct FIN have been presented in this paper. Three evaluation indexes including compactness, recall and F1-measure are applied to evaluate the performance of FINHC, hierarchical clustering (HC) k-means, k-medoids, density-based spatial clustering of applications with noise (DBSCAN) in six experiments used UCI public datasets and one experiment used KEEL public dataset. The FINHC algorithm shows better clustering performance compared to other traditional clustering algorithms and the results are also discussed specifically.","PeriodicalId":39658,"journal":{"name":"International Journal of Intelligent Information and Database Systems","volume":"102 1","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchical clustering on metric lattice\",\"authors\":\"Xiangyan Meng, Muyan Liu, Jingyi Wu, Huiqiu Zhou, F. Xu, Qiufeng Wu\",\"doi\":\"10.1504/ijiids.2020.10030210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a new clustering algorithm named 'fuzzy interval number hierarchical clustering' (FINHC) by converting original data into fuzzy interval number (FIN) firstly, then it proves F that denotes the collection of FINs is a lattice and introduces a novel metric distance based on the results from lattice theory, as well as combining them with hierarchical clustering. The relevant mathematical background about lattice theory and the specific algorithm which is used to construct FIN have been presented in this paper. Three evaluation indexes including compactness, recall and F1-measure are applied to evaluate the performance of FINHC, hierarchical clustering (HC) k-means, k-medoids, density-based spatial clustering of applications with noise (DBSCAN) in six experiments used UCI public datasets and one experiment used KEEL public dataset. The FINHC algorithm shows better clustering performance compared to other traditional clustering algorithms and the results are also discussed specifically.\",\"PeriodicalId\":39658,\"journal\":{\"name\":\"International Journal of Intelligent Information and Database Systems\",\"volume\":\"102 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijiids.2020.10030210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijiids.2020.10030210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

本文首先将原始数据转换为模糊区间数(FIN),提出了一种新的聚类算法“模糊区间数分层聚类”(FINHC),然后证明了表示FIN集合的F是一个格,并在格理论结果的基础上引入了一种新的度量距离,并将它们与分层聚类相结合。本文介绍了格理论的相关数学背景和构造网格的具体算法。在UCI公共数据集和KEEL公共数据集的6个实验和1个实验中,采用紧凑性、召回率和f1测度3个评价指标对FINHC、分层聚类(HC)、k-means、k-medoids、基于密度的空间聚类(DBSCAN)进行了性能评价。FINHC算法与其他传统聚类算法相比具有更好的聚类性能,并对结果进行了具体讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical clustering on metric lattice
This work proposes a new clustering algorithm named 'fuzzy interval number hierarchical clustering' (FINHC) by converting original data into fuzzy interval number (FIN) firstly, then it proves F that denotes the collection of FINs is a lattice and introduces a novel metric distance based on the results from lattice theory, as well as combining them with hierarchical clustering. The relevant mathematical background about lattice theory and the specific algorithm which is used to construct FIN have been presented in this paper. Three evaluation indexes including compactness, recall and F1-measure are applied to evaluate the performance of FINHC, hierarchical clustering (HC) k-means, k-medoids, density-based spatial clustering of applications with noise (DBSCAN) in six experiments used UCI public datasets and one experiment used KEEL public dataset. The FINHC algorithm shows better clustering performance compared to other traditional clustering algorithms and the results are also discussed specifically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
21
期刊介绍: Intelligent information systems and intelligent database systems are a very dynamically developing field in computer sciences. IJIIDS provides a medium for exchanging scientific research and technological achievements accomplished by the international community. It focuses on research in applications of advanced intelligent technologies for data storing and processing in a wide-ranging context. The issues addressed by IJIIDS involve solutions of real-life problems, in which it is necessary to apply intelligent technologies for achieving effective results. The emphasis of the reported work is on new and original research and technological developments rather than reports on the application of existing technology to different sets of data.
期刊最新文献
Development of Wearable Embedded Hybrid Powered Energy Sources for Mobile Phone Charging System Applying the Self-Organizing Map in the Classification of 195 Countries Using 32 Attributes Artificial Intelligence Chatbot Advisory System Intelligent Information and Database Systems: 15th Asian Conference, ACIIDS 2023, Phuket, Thailand, July 24–26, 2023, Proceedings, Part I Modelling of COVID-19 spread time and mortality rate using machine learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1