{"title":"二乙基三胺(DETA)改性纳米纤维膜和商用微膜的抗菌性能","authors":"Izabela J. Gallus, Evren Boyraz, J. Maryska","doi":"10.1155/2023/8927774","DOIUrl":null,"url":null,"abstract":"Water demand is steadily increasing, and usable water supply is constantly decreasing. It is urgent to find a cheap and efficient way to recycle water. Currently, membrane technologies are getting promising results, but some factors drastically reduce their effectiveness. In membrane filtration, biofouling is one of the most limiting factors, reducing filtration efficiency. In this work, the micro- and nanofibres-composed membranes were modified with diethylenetriamine (DETA), and silver nanoparticles were attached to a modified surface to minimize biofouling risk during filtration. Different conditions were tested for reaction with DETA and attachment of nanoparticles. Antimicrobial tests were performed, and the leaching of nanoparticles over time was checked. The modified membranes (Nadir® MV020T and PA PVDF) containing silver nanoparticles ranging in size from 20 to 50 nm showed antibacterial properties against Escherichia coli in the form of 3–4 mm inhibitory zones. The percentage of released AgNPs was 0.47% and 2.12% for Nadir® MV020T and PA PVDF membrane after 21 days, respectively. Polyvinylpyrrolidone was used to increase the stability of the nanoparticles, and the results were compared.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Properties of Nanofiber Membrane and Commercial Micromembrane by Modification with Diethylenetriamine (DETA) and Attachment of Silver Nanoparticles\",\"authors\":\"Izabela J. Gallus, Evren Boyraz, J. Maryska\",\"doi\":\"10.1155/2023/8927774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water demand is steadily increasing, and usable water supply is constantly decreasing. It is urgent to find a cheap and efficient way to recycle water. Currently, membrane technologies are getting promising results, but some factors drastically reduce their effectiveness. In membrane filtration, biofouling is one of the most limiting factors, reducing filtration efficiency. In this work, the micro- and nanofibres-composed membranes were modified with diethylenetriamine (DETA), and silver nanoparticles were attached to a modified surface to minimize biofouling risk during filtration. Different conditions were tested for reaction with DETA and attachment of nanoparticles. Antimicrobial tests were performed, and the leaching of nanoparticles over time was checked. The modified membranes (Nadir® MV020T and PA PVDF) containing silver nanoparticles ranging in size from 20 to 50 nm showed antibacterial properties against Escherichia coli in the form of 3–4 mm inhibitory zones. The percentage of released AgNPs was 0.47% and 2.12% for Nadir® MV020T and PA PVDF membrane after 21 days, respectively. Polyvinylpyrrolidone was used to increase the stability of the nanoparticles, and the results were compared.\",\"PeriodicalId\":16442,\"journal\":{\"name\":\"Journal of Nanomaterials\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8927774\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2023/8927774","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Antimicrobial Properties of Nanofiber Membrane and Commercial Micromembrane by Modification with Diethylenetriamine (DETA) and Attachment of Silver Nanoparticles
Water demand is steadily increasing, and usable water supply is constantly decreasing. It is urgent to find a cheap and efficient way to recycle water. Currently, membrane technologies are getting promising results, but some factors drastically reduce their effectiveness. In membrane filtration, biofouling is one of the most limiting factors, reducing filtration efficiency. In this work, the micro- and nanofibres-composed membranes were modified with diethylenetriamine (DETA), and silver nanoparticles were attached to a modified surface to minimize biofouling risk during filtration. Different conditions were tested for reaction with DETA and attachment of nanoparticles. Antimicrobial tests were performed, and the leaching of nanoparticles over time was checked. The modified membranes (Nadir® MV020T and PA PVDF) containing silver nanoparticles ranging in size from 20 to 50 nm showed antibacterial properties against Escherichia coli in the form of 3–4 mm inhibitory zones. The percentage of released AgNPs was 0.47% and 2.12% for Nadir® MV020T and PA PVDF membrane after 21 days, respectively. Polyvinylpyrrolidone was used to increase the stability of the nanoparticles, and the results were compared.
期刊介绍:
The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.