{"title":"基于人工神经网络的混合模型需求预测——以电气产品为例","authors":"H. Quiñones, Oscar Rubiano, Wilfredo Alfonso","doi":"10.3926/jiem.3928","DOIUrl":null,"url":null,"abstract":"Purpose: This work aims to evaluate demand forecasting models to determine if using exogenous factors and machine learning techniques helps improve performance compared to univariate statistical models, allowing manufacturing companies to manage demand better.Design/methodology/approach: We implemented a multivariate Auto-Regressive Moving Average with eXogenous input (ARMAX) statistical model and a Neural Network-ARMAX (NN-ARMAX) hybrid model for forecasting. Later, we compared both to a standard univariate statistical model to forecast the demand for electrical products in a Colombian manufacturing company.Findings: The outcomes demonstrated that the NN-ARMAX model outperformed the other two. Indeed, demand management improved with the reduction of overstock and out-of-stock products.Research limitations/implications: The findings and conclusions in this work are limited to Colombian manufacturing companies that sell electrical products to the construction industry. Moreover, the experts from the company that provided us with the data also selected the external factors based on their own experiences, i.e., we might have disregarded potential factors.Practical implications: This work suggests that a model using neural networks and including exogenous variables can improve demand forecasting accuracy, promoting this approach in manufacturing companies dealing with demand planning issues.Originality/value: The findings in this work demonstrate the convenience of using the proposed hybrid model to improve demand forecasting accuracy and thus provide a reliable basis for its implementation in supply chain planning for the electrical/construction sector in Colombian manufacturing companies. ","PeriodicalId":38526,"journal":{"name":"International Journal of Industrial Engineering and Management","volume":"64 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demand forecasting using a hybrid model based on artificial neural networks: A study case on electrical products\",\"authors\":\"H. Quiñones, Oscar Rubiano, Wilfredo Alfonso\",\"doi\":\"10.3926/jiem.3928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: This work aims to evaluate demand forecasting models to determine if using exogenous factors and machine learning techniques helps improve performance compared to univariate statistical models, allowing manufacturing companies to manage demand better.Design/methodology/approach: We implemented a multivariate Auto-Regressive Moving Average with eXogenous input (ARMAX) statistical model and a Neural Network-ARMAX (NN-ARMAX) hybrid model for forecasting. Later, we compared both to a standard univariate statistical model to forecast the demand for electrical products in a Colombian manufacturing company.Findings: The outcomes demonstrated that the NN-ARMAX model outperformed the other two. Indeed, demand management improved with the reduction of overstock and out-of-stock products.Research limitations/implications: The findings and conclusions in this work are limited to Colombian manufacturing companies that sell electrical products to the construction industry. Moreover, the experts from the company that provided us with the data also selected the external factors based on their own experiences, i.e., we might have disregarded potential factors.Practical implications: This work suggests that a model using neural networks and including exogenous variables can improve demand forecasting accuracy, promoting this approach in manufacturing companies dealing with demand planning issues.Originality/value: The findings in this work demonstrate the convenience of using the proposed hybrid model to improve demand forecasting accuracy and thus provide a reliable basis for its implementation in supply chain planning for the electrical/construction sector in Colombian manufacturing companies. \",\"PeriodicalId\":38526,\"journal\":{\"name\":\"International Journal of Industrial Engineering and Management\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Industrial Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3926/jiem.3928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3926/jiem.3928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Demand forecasting using a hybrid model based on artificial neural networks: A study case on electrical products
Purpose: This work aims to evaluate demand forecasting models to determine if using exogenous factors and machine learning techniques helps improve performance compared to univariate statistical models, allowing manufacturing companies to manage demand better.Design/methodology/approach: We implemented a multivariate Auto-Regressive Moving Average with eXogenous input (ARMAX) statistical model and a Neural Network-ARMAX (NN-ARMAX) hybrid model for forecasting. Later, we compared both to a standard univariate statistical model to forecast the demand for electrical products in a Colombian manufacturing company.Findings: The outcomes demonstrated that the NN-ARMAX model outperformed the other two. Indeed, demand management improved with the reduction of overstock and out-of-stock products.Research limitations/implications: The findings and conclusions in this work are limited to Colombian manufacturing companies that sell electrical products to the construction industry. Moreover, the experts from the company that provided us with the data also selected the external factors based on their own experiences, i.e., we might have disregarded potential factors.Practical implications: This work suggests that a model using neural networks and including exogenous variables can improve demand forecasting accuracy, promoting this approach in manufacturing companies dealing with demand planning issues.Originality/value: The findings in this work demonstrate the convenience of using the proposed hybrid model to improve demand forecasting accuracy and thus provide a reliable basis for its implementation in supply chain planning for the electrical/construction sector in Colombian manufacturing companies.
期刊介绍:
International Journal of Industrial Engineering and Management (IJIEM) is an interdisciplinary international academic journal published quarterly. IJIEM serves researchers in the industrial engineering, manufacturing engineering and management fields. The major aims are: To collect and disseminate information on new and advanced developments in the field of industrial engineering and management; To encourage further progress in engineering and management methodology and applications; To cover the range of engineering and management development and usage in their use of managerial policies and strategies. Thus, IJIEM invites the submission of original, high quality, theoretical and application-oriented research; general surveys and critical reviews; educational or training articles including case studies, in the field of industrial engineering and management. The journal covers all aspects of industrial engineering and management, particularly: -Smart Manufacturing & Industry 4.0, -Production Systems, -Service Engineering, -Automation, Robotics and Mechatronics, -Information and Communication Systems, -ICT for Collaborative Manufacturing, -Quality, Maintenance and Logistics, -Safety and Reliability, -Organization and Human Resources, -Engineering Management, -Entrepreneurship and Innovation, -Project Management, -Marketing and Commerce, -Investment, Finance and Accounting, -Insurance Engineering and Management, -Media Engineering and Management, -Education and Practices in Industrial Engineering and Management.